K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không tồn tại số x

4 tháng 1 2019

Đinh Tuấn việt chép mạng thề luôn!

nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha

Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là

2012^2x = 4048144^x 

Nhưng đề bài lại nói là 2015^2x  cơ mà ??

7 tháng 5 2023

Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:

\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)

Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương

Do n là các số nguyên dương nên \(n+2\ge2\)

Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương

\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương

17 tháng 12 2021

#include <bits/stdc++.h>

using namespace std;

long long a[4],n,x;

int main()

{

cin>>n>>x;

for (i=1; i<=n; i++) cin>>a[i];

for (i=1; i<=n; i++)

if (a[i]==x)

{

cout<<"YES";

break;

}

cout<<"NO";

return 0;

}