K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Điểm cố định của (d) là:

x=0 và y=m*0+2=2

2: PTHĐGĐ là:

x2-mx-2=0

a=1; b=-m; c=-2

Vì a*c<0

nên (P) luôn cắt (d) tại hai điểm khác phía so với trục tung

NV
7 tháng 7 2021

Pt hoành độ giao điểm:

\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)

d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)

\(\Leftrightarrow m< 1\)

a: Thay x=1 và y=3 vào (d), ta được:

m+3-m=3

=>3=3(luôn đúng)

b: PTHĐGĐ là:

x^2-mx-3+m=0

=>x^2-mx+m-3=0

Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0

=>m<3

b: Phương trình hoành độ giao điểm là:

\(x^2+\left(m-2\right)x-m^2-1=0\)

\(ac=-m^2-1< 0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

3 tháng 1 2019

Đáp án B

10 tháng 6 2023

Vì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung  nên phương trình sẽ có 2 nghiệm trái dấu

PT có 2 nghiệm trái dấu thì \(\left\{{}\begin{matrix}\Delta'>0\\P< 0\end{matrix}\right.\)

PT hoành độ giao điểm giữa ( P ) và ( d ) là \(x^2-2x+m-9=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(m-9\right)>0\\P=m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-m+10>0\\m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< 10\\m< 9\end{matrix}\right.\\ \Leftrightarrow m< 9\)

Vậy m < 9 thì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung

7 tháng 11 2017

Bài 3 làm sao v ạ?

20 tháng 11 2017

Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1

↔ x 2 − (m + 2)x + m + 1 = 0 (1)

(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0

↔ m < −1

Vậy m < −1

Đáp án: A