K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

Tự vẽ hình!

a) \(\frac{BE}{EN}=\frac{BQ}{QF}=\frac{BQ}{MQ}=\frac{AB}{AC}=\frac{BD}{DC}\)

=> DE//NC hoặc DE//AC

b) Do DE//AC nên:

\(\frac{DE}{CN}=\frac{BD}{BC}\Rightarrow DE=\frac{BD}{BC}.CN\left(1\right)\)

Tương tự, ta có:

\(DF=\frac{CD}{BC}.BM\left(2\right)\)

Từ (1) và (2) \(=\frac{DE}{DF}=\frac{BD}{CD}\cdot\frac{CN}{BM}\)

Mà: \(\frac{BD}{CD}=\frac{AB}{AC}\)và \(\frac{CN}{BM}=\frac{AC}{AB}\)

Nên \(\frac{DE}{DF}=1\Rightarrow DE=DF\)

=> \(\widehat{D_1}=\widehat{DAC}=\widehat{DAB}=\widehat{D_2}\)

\(\Rightarrow\Delta ADE=\Delta ADF\)

\(\Rightarrow AE=AF\)

13 tháng 2 2018

CM AE =AF nhé! mk nhầm

11 tháng 9 2017

a) △ABC△ABC có AD phân giác:

=>BDDC=ABAC=>BDDC=ABAC

△BEQ △BNP△BEQ △BNP

=>BEEN=BQQP=>BEEN=BQQP

△BQM △BAC△BQM △BAC

=>BQQM=ABAC=BDDC=BQQP=BEEN=>BQQM=ABAC=BDDC=BQQP=BEEN

=>BEEN=BDDC=>BEEN=BDDC

Câu b: C/m tương tự DF//AB

dùng tính chất tỉ lệ thức, ....

=>đpcmbanhqua

a:Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trực của AE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADF=góc EDC

=>ΔDAF=ΔDEC

=>DF=DC

c: AD=DE

DE<DC

=>AD<DC

11 tháng 8 2021

a, Xét tam giác ABD và tam giác EBD có:
     góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
     BD=BD(chung)
     góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
   AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....


  
 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE