Câu 1:Cho A=\(\dfrac{12n+1}{2n+3}\\\).Tìm giá trị của n để:
a)A là 1 phân số.
b)A là 1 số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{12n+1}{2n+3}\) là một phân số khi: \(12n+1\in Z,2n+3\in Z\) và \(2n+3\ne0\)
\(\Leftrightarrow n\in Z\) và \(n\ne-1,5\)
\(b,A=\dfrac{12n+1}{2n+3}=-6\dfrac{17}{2n+3}\)
A là số nguyên khi \(2n+3\inƯ\left(17\right)\Leftrightarrow2n+3\in\left\{\pm1;\pm17\right\}\)
\(\Leftrightarrow n\in\left\{-10;-2;-1;7\right\}\)
a) Để A là ps thì: \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)
b) \(A=\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2x+3}\)
Vậy để \(A\in Z\) thì \(2n+3\inƯ\left(17\right)\)
Mà Ư(17)={1;-1;17;-17}
Ta có bảng sau:
2n+3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -9 |
Vậy x={ -9;-2;-1;7}
Mình thắc mắc là: tại sao 2n+3... -17 á.Làm sao mà = -9 được. 2n+3= -17 thì
2n= -17-3
2n=-20
n= -20:2
n= -10
Vậy n= -10 chứ
A=12n+12n+3=12n+18−172n+3=6(2n+3)−172n+3=6(2n+3)2n+3−172n+3=6−172n+3A=12n+12n+3=12n+18−172n+3=6(2n+3)−172n+3=6(2n+3)2n+3−172n+3=6−172n+3
Để A là số nguyên => 2n + 3 thuộc Ư(17) = {1;-1;17;-17}
Ta có: 2n + 3 = 1 => n = -1
2n + 3 = -1 => n = -2
2n + 3 = 17 => n = 7
2n + 3 = -17 => n = -10
n =-10;-2;-1;7
a) Để A là phân số
Thì 12n+1 \(\in\)Z, 2n+3 \(\in\)Z
và 2n+3 \(\ne\)0
Ta có: 2n+3 \(\ne\)0
2n \(\ne\)0-3
2n \(\ne\)-3
n\(\ne\)-3:2
n\(\ne\)\(\frac{-3}{2}\)
Vậy để A là phân số thì n \(\in\)Z, n\(\ne\)\(\frac{-3}{2}\)
b) Để A là số nguyên
Thì (12n+1) \(⋮\)(2n+3)
Ta có: 12n+1= 2.6.n + (18-17) (vì 18:6= 3, mình giải thích thêm thôi)
= 2.6.n+18-17
= 6.(2n+3) -17
\(\Rightarrow\)[6(2n+3)-17] \(⋮\)(2n+3)
Vì [6(2n+3)] \(⋮\)(2n+3)
Nên để [6(2n+3)-17] \(⋮\)(2n+3)
thì 17\(⋮\)(2n+3)
\(\Rightarrow\)(2n+3)\(\in\)Ư(17)
Ta có: Ư(17)={1;-1;17;-17}
\(\Rightarrow\)(2n+3) \(\in\){1;-1;17;-17}
Với 2n+3=1
2n=1-3
2n=-2
n=-2:2
n=-1
...( bạn tự viết đến hết và tự kết luận nhé
sao bạn không lâp bảng cho tiện . đỡ phải viết dài dòng
a, Để A là phân số <=> 2n + 3 khác 0 => n khác -3/2
b, \(A=\frac{12n+1}{2n+3}=\frac{12n+18-17}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=\frac{6\left(2n+3\right)}{2n+3}-\frac{17}{2n+3}=6-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2n + 3 thuộc Ư(17) = {1;-1;17;-17}
Ta có: 2n + 3 = 1 => n = -1
2n + 3 = -1 => n = -2
2n + 3 = 17 => n = 7
2n + 3 = -17 => n = -10
Vậy n = {-10;-2;-1;7}
\(A=\frac{12n+1}{2n+3}=\frac{6.\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
để \(A\in Zthi\frac{17}{2n+3}\in Z\)
và \(17⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(17\right)=1;17;-1;-17\)
\(\Rightarrow n\in\left(-1;7;-2;-10\right)\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
a) Để A là một phân số thì mẫu của \(A\ne0\) hay \(2n+3\ne0\)
\(\Leftrightarrow n\ne\dfrac{-3}{2}\)
b) Ta có : \(A=\dfrac{12n+1}{2n+3}\)
\(\Rightarrow A=\dfrac{12n+18-17}{2n+3}=\dfrac{12n+18}{2n+3}-\dfrac{17}{2n+3}\)
\(\Rightarrow A=\dfrac{6\left(2n+3\right)}{2n+3}-\dfrac{17}{2n+3}=6-\dfrac{17}{2n+3}\)
Để \(A\in Z\Leftrightarrow\dfrac{17}{2n+3}\in Z\)
\(\Leftrightarrow2n+3\in U\left(17\right)\)
mà \(U\left(17\right)=\left(1;-1;17;-17\right)\)
\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)
Vậy \(A\in Z\Leftrightarrow n\in\left(-1;-2;7;-10\right)\)