K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

12.1=12

25 tháng 3 2017

\(x^2-2y^2=1\)

\(\Leftrightarrow x^2=2y^2+1\)

Vì \(x^2\)là số chính phương lẻ

\(\Rightarrow x^2=2y^2+1⋮1\left(mod4\right)\)mà theo đề ra y là số nguyên tố

\(\Rightarrow y=2;x=3\)

24 tháng 2 2020

Ta có : \(D=4x^4+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)

Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)

Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Thử lại ta có \(D=1\) không là số nguyên tố

Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.

19 tháng 5 2016

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

19 tháng 5 2016

Nguyễn Thị Mai copy trên mạng,ko tính

27 tháng 10 2021

1 ; 103 

HT

27 tháng 10 2021

101; 2.

DD
27 tháng 10 2021

Hai số có tổng là \(103\)nên là tổng của một số chẵn và một số lẻ. 

Mà hai số là số nguyên tố nên \(103=2+101\).

Thỏa mãn. 

4 tháng 2 2020

Dễ thấy pq+7 là số lẻ \(\Rightarrow\)pq chẵn\(\Rightarrow\)p=2 hoặc q=2

th1: p=2\(\Rightarrow\)q=3,7

thử lại thấy chỉ có q=3 đúng.

th2: q=2

neu p=2 thi 5p+q khong phai so nguyen to

neu p=3 thi ca hai thoa man

neu p>3 thi p co dang 3k+1;3k+2

(lam tiep...)