K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔBKC vuông tại K

 mà KM là trung tuyến

nên KM=BC/2

ΔBHC vuông tạiH

mà HM là trung tuyến

nên HM=BC/2

=>MH=MK

=>ΔMHK cân tại M

=>góc MHK=góc MKH

DD
5 tháng 7 2021

Tam giác \(BKC\)vuông tại \(K\)có \(M\)là trung điểm của cạnh huyền \(BC\)nên \(KM=\frac{1}{2}BC\).

Tương tự ta cũng có \(HM=\frac{1}{2}BC\)

Suy ra \(KM=HM\)

\(\Rightarrow\Delta MKH\)cân tại \(M\).

Kẻ \(MN\)vuông góc với \(DE\).

Suy ra \(MN//BD//CE\)mà \(M\)là trung điểm của \(BC\)nên \(MN\)là đường trung bình của hình thang \(BDEC\).

suy ra \(N\)là trung điểm của \(DE\Rightarrow DN=NE\)(1).

Mà tam giác \(MKH\)cân tại \(M\)nên \(MN\)là đường cao đồng thời cũng là đường trung tuyến suy ra \(KN=HN\)(2)

(1) (2) suy ra \(DN-KN=EN-HN\Leftrightarrow DK=HE\).

Ta có đpcm.

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

1 tháng 7 2021

A B C M N O S D H E F K P Q I J

a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.

b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ

Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)

c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.

Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)

Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH

Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:

\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC

Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ

Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.

a: Ta có: ΔBKC vuông tại K

mà KM là đường trung tuyến

nên KM=BC/2(1)

Ta có: ΔBHC vuông tại H

mà HM là đường trung tuyến

nên HM=BC/2(2)

Từ (1)và (2) suy ra MH=MK

hay ΔMHK cân tại M

b: Kẻ MN vuông góc với HK

=>N là trung điểm của HK

Xét hình thang CBDE có

M là trung điểm của BC

MN//DB//EC

DO đó: N là trung điểm của DE

=>DK=HE

31 tháng 12 2016

a) Xét ΔBCK vuông tại K có KM là trung tuyến ⟹KM=1/2BC

Xét ΔBCH vuông tại K có HM là trung tuyến ⟹HM=1/2BC

⟹KM=HM⟹ΔHKM cân tại M

b) Kẻ MN⊥DE(N∈DE)

Ta có: BD⊥DE;CE⊥DE⟹BD//CE

⟹BDEC là hình thang

Xét hình thang BDEC có: MN⊥DE⟹MN//CE;BM=CM(gt)⟹DN=EN=EN

Mặt khác, ΔKHMΔKHM là tam giác cân có MN⊥DE⟹MN

Trừ theo vế (1) và (2) ta có: DN−KN=EN−HN⟹DK=HE

Bài 1:

a: Ta có: ΔBKC vuông tại K

mà KM là đường trung tuyến

nên KM=BC/2(1)

Ta có: ΔBHC vuông tại H

mà HM là đường trung tuyến

nên HM=BC/2(2)

Từ (1)và (2) suy ra MH=MK

hay ΔMHK cân tại M

b: Kẻ MN vuông góc với HK

=>N là trung điểm của HK

Xét hình thang CBDE có

M là trung điểm của BC

MN//DB//EC

DO đó: N là trung điểm của DE

=>DK=HE

20 tháng 3 2021

anh đây đẹp troai, chim dài mét hai !

2 tháng 4 2021

con ciu 5cm im đi