Tìm tỉ số của A và B biết rằng:
A=\(\frac{1}{1.1981}\)+\(\frac{1}{2.1980}\)+...+\(\frac{1}{n.\left(1980+n\right)}\)+...+\(\frac{1}{25.2005}\)
B=\(\frac{1}{1.26}\)+\(\frac{1}{2.27}\)+...+\(\frac{1}{m.\left(25+m\right)}\)+...+\(\frac{1}{1980.2005}\)
trong đó,A có 25 số hạng và B có 1980 số hạng.
Ta có: \(\frac{1}{n.\left(1980-n\right)}\)=\(\frac{1}{1980}\).\(\left(\frac{1}{n}-\frac{1}{1980+n}\right)\) (1)
\(\frac{1}{m.\left(25+m\right)}\)=\(\frac{1}{25}\).\(\left(\frac{1}{25}-\frac{1}{25+m}\right)\) (2)
Áp dụng khai triển (1) cho mỗi số hạng của A và khai triển (2) cho mỗi số hạng của B, ta được:
A=\(\frac{1}{1980}\).\(\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{25}-\frac{1}{2005}\right)\)
=\(\frac{1}{1980}\).\(\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\) (3)
Nhận thấy hai biểu thức trong hai dấu ngoặc vế bên phải của B có phần chung là:\(\frac{1}{26}\)+\(\frac{1}{27}\)+...+\(\frac{1}{1980}\).Do đó, sau khi rút gọn, ta được:
B=\(\frac{1}{25}\).\(\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\) (4)
Từ (3) và (4), suy ra: A:B=\(\frac{25}{1980}\)=\(\frac{5}{396}\)
Vậy ta được \(\frac{A}{B}\)=\(\frac{5}{396}\)
5/396