K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Bạn ơi bài này ở sách nào thế

7 tháng 4 2021
Câu a,Vì M thuộc miền trong của tam giác abc. Nên tia BM thuộc miền trong của góc B, nó cắt AC tại B D nằm giữa A và C, M nằm giữa B và D Trong tam giác BAD có: BM+MD
22 tháng 2 2016

moi hok lop 6 thoi

9 tháng 9 2019

Gọi \(I\)là giao điểm của \(BC\)và \(AM\)còn \(H\)và \(K\)theo thứ tự là hình chiếu của \(B\)và \(C\)trên \(AM\)

Ta có: \(BI\ge BH\)và \(CI\ge CH\)( quan hệ đường xiên - đường vuông góc )

Đẳng thức xảy ra khi \(AM\perp BC\)

Suy ra:

           \(MA.BC=MA.\left(BI+BC\right)\ge MA.\left(BH+CK\right)\)

       \(\Leftrightarrow MA.BC\ge MA.BH+MA.CK\)

      \(\Leftrightarrow MA.BC\ge2S_{MAB}+2S_{MCA}\)                                                      \(\left(1\right)\)

Chứng minh tương tự ta cũng có: \(\Leftrightarrow MA.BC\ge2S_{MAB}+2S_{MCA}\)         \(\left(2\right)\)

( Đẳng thức xảy ra khi \(MB\perp CA\))

      \(MC.AB\ge2S_{MCA}+2S_{MBC}\)                                                            \(\left(3\right)\)

Cộng từng vế với ba bất đẳng thức \(\left(1\right)\)và \(\left(2\right)\)và \(\left(3\right)\)ta được:

\(MA.BC+MB.CA+MC.AB\ge4.\left(S_{MAB}+S_{MCA}+S_{ABC}\right)\)

Đặt \(S=S_{ABC}\)thì \(S\)không đổi và \(T\ge4S\)

Vậy: \(T_{min}=4S\)khi \(M\)là trực tâm \(\Delta ABC\)

13 tháng 9 2019

A B C M N

Dựng hình bình hành AMBN. Lúc đó \(MA.BC=BN.BC\ge2S_{BCN};MB.CA\ge2S_{CAN}\)

Suy ra \(MA.BC+MB.CA\ge2\left(S_{BCN}+S_{CAN}\right)=2\left(S_{ABC}+S_{AMB}\right)\) (Vì tứ giác AMBN là hình bình hành)

Tương tự: \(MB.CA+MC.AB\ge2\left(S_{ABC}+S_{BMC}\right);MC.AB+MA.BC\ge2\left(S_{ABC}+S_{CMA}\right)\)

Do vậy \(2\left(MA.BC+MB.CA+MC.AB\right)\ge2\left(3S_{ABC}+S_{AMB}+S_{BMC}+S_{CMA}\right)=8S_{ABC}\)

Suy ra \(2T\ge8S_{ABC}\Rightarrow T\ge4S_{ABC}.\)

Dấu "=" xảy ra khi và chỉ khi BN vuông góc BC, AN vuông góc AC <=> M là trực tâm \(\Delta\)ABC.

24 tháng 11 2017

A B C M I

Do AB = AC nên tam giác ABC cân tại A

Mà AI là đường trung tuyến (do I là trung điểm của BC)

=> AI cũng là đường trung trực của tam giác ABC

Lại có: MB = MC (theo giả thiết) => M cách đều 2 đầu mút B và C của đoạn thẳng BC

                                               => M \(\in\)AI                         

                                              nên A , M , I thẳng hàng