cho A= 4+22+23+24+.....+220 hỏi A có chia hết cho 128 không?tại sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên a là :
10 × 24 = 240
=> 240 chia hết cho 2
=> 240 chia hết cho 4
a chia hết cho 2 vì 10 chia hết cho 2
a không chia hết cho 4 vì 10 không chia hết cho 4
vì số tự nhiên a chia cho 24 được số dư là 10 nên a = 24k + 10
Ta có
a = 24k + 10 = 2 x 12k + 2.5 = 2 . ( 12k + 5 ) chia hết cho 2
=> a chia hết cho 2
ta có :
24k ko chia hết cho 4
10 ko chia hết cho 4
=> 24k + 10 ko chia hết cho 4
=> a ko chia hết cho 4
A = 2 + 22 + 23 + 24 + .... + 299 + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= 2(1 + 2) + 23(1 + 2) + .... + 299(1 + 2)
= 3(2 + 23 + ... + 299) \(⋮3\)
Ta thấy A \(⋮2\)vì tất cả hạng tử của A chia hết cho 2
mà (2; 3) = 1
nên A \(⋮6\)
Ta có: A= 2+22+23+24+...+299+2100
=> A= (2+22)+(23+24)+...+(299+2100)
=> A= (2+22) +22(2+22)+...+299(2+22)
=> A= 6+22.6+...+299.6
=> A= 6(1+22+...+299) chia hết cho 6
A = 2101 + 1
A = 2. (250)2 + 1
2 không chia hết cho 3⇒ (250)2:3 dư 1 (tc của một số chính phương)
⇒ 2.(550)2 : 3 dư 2 ⇒ 2.(250)2 + 1 ⋮ 3
Ta có:4+2^2+2^3+2^4+2^5+2^6=128
Suy ra ta sẽ lập đc 3bnhóm mỗi nhóm 6 số để chia hết ch0 128 và thừa 2^19;2^20
2^19+2^20=1572864 chia het cho128
A chia het cho 128
chia hết