cho x,y thoa man 3x+y=1 tim gt nn cua A=3x*x=y*y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
mình mới học lớp 5 thôi !
Thông cảm cho mình nhé Do uyen Linh !
\(P=\frac{1}{x}+\frac{1}{y}+xy^2+x^2y=\left(\frac{1}{16x}+xy^2\right)+\left(\frac{1}{16y}+x^2y\right)+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{y}{2}+\frac{x}{2}+\frac{15}{16}.\frac{4}{x+y}\)
\(=\left(\frac{x+y}{2}+\frac{1}{2\left(x+y\right)}\right)+\frac{13}{4\left(x+y\right)}\)
\(\ge1+\frac{13}{4}=\frac{17}{4}\)
Dấu "=" xảy ra <=> x = y = 1/2
\(3x+7=y\left(x-3\right)\)
\(\Rightarrow3x+7=xy-3y\)
\(3x-xy+3y=-7\)
\(x\left(3-y\right)+3y=-7\)
\(\Rightarrow-x.\left(y-3\right)+3y=-7\)
\(-x\left(y-3\right)+3y-9=-7-9=-16\)
\(-x\left(y-3\right)+3\left(y-3\right)=-16\)
\(\left(3-x\right)\left(y-3\right)=-16\)
\(\Rightarrow3-x;y-3\inƯ\left(-16\right)=\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\)
3-x | -16 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 16 |
x | 19 | 11 | 7 | 5 | 4 | 2 | 1 | -1 | -5 | -13 |
y-3 | 1 | 2 | 4 | 8 | 16 | -16 | -8 | -4 | -2 | -1 |
y | 4 | 5 | 7 | 11 | 19 | -13 | -5 | -1 | 1 | 2 |
\(\hept{\begin{cases}3x-y=2m+3\\x+2y=3m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}6x-2y=4m+6\\x+2y=3m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m+1\\y=m\end{cases}}\)khi đó: \(^{x^2+y^2=5\Leftrightarrow2m^2+2m+1=5\Leftrightarrow2m^2+2m-4=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}}\)