So sánh :
1/101+1/102+1/103+....+1/200 và 1
Ng trả lời nhanh nhất sẽ được sao. Mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(.........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))
\(\Leftrightarrow A>\frac{100}{200}\)
\(\Leftrightarrow A>\frac{1}{2}\)
Giải:
Ta gọi:
A=101/102+102/103
B=101+102/102+103
Ta có:
B=101+102/102+103
B=101/102+103+102/102+103
Vì 101/102+103<101/102
102/102+103<102/103
nên A>B
Chúc bạn học tốt!
a) Ta có: \(\frac{2010}{2009}=1+\frac{1}{2009}\)(1)
\(\frac{2011}{2010}=1+\frac{1}{2010}\)(2)
Từ (1) và (2)
Mà: \(\frac{1}{2009}>\frac{1}{2010}\)
\(\Rightarrow\frac{2010}{2009}>\frac{2011}{2010}\)
b) Ta có: 100 số hạng của dãy đều bé hơn 1/100
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}\cdot100\)
Hay \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< 1\)
1/ Ta có : tất cả các p/s ở tổng A đều có tử bằng 1 . Mà MS 101 < 102 ; 103 ; ... ; < 200 .
Nên 1/101 là p/s lớn nhất ( lớn hơn 1/102 ; 1/103 ; ... ; 1/200 )
2/ Tổng A có phân số là : ( 200 - 101 ) : 1 + 1 = 100 (phân số ) .
Nếu thay cả 100 p/s bằng p/s lớn nhất : 1/101 thì tổng A = 1/101 . 100 = 100/101 < 1 .
=> 1/101 + 1/102 + 1/103 + ... + 1/200 ( 100p/s ) < 1/101 + 1/101 + 1/101 + ... + 1/101 (100 p/s ) < 1 .
Vậy : A < 1
Để Đó mình lo cho:
Ta có:
\(\frac{1}{101}+\frac{1}{102}+.......+\frac{1}{199}+\frac{1}{200}=A\)\(A\)
=>101A=\(101\times\left(\frac{1}{101}+\frac{1}{102}+......+\frac{1}{199}+\frac{1}{200}\right)\)
=>101A=\(\left(101\times\frac{1}{101}\right)+\left(101\times\frac{1}{102}\right)+........+\left(101\times\frac{1}{199}\right)+\left(101\times\frac{1}{200}\right)\)
=>101A=\(1+\frac{101}{102}+.....+\frac{101}{199}+\frac{101}{200}>1\)
=>101A>1
=>A>1
Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Ta có:
\(\dfrac{1}{101}>\dfrac{1}{200}\)
\(\dfrac{1}{102}>\dfrac{1}{200}\)
\(\dfrac{1}{103}>\dfrac{1}{200}\)
...
\(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)
\(=\dfrac{1}{200}.100\)
\(=\dfrac{1}{2}\)
Mà \(\dfrac{1}{2}< 1\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< 1\).