K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Kb nha ,mik sẽ trả lời giúp bạn 

6 tháng 5 2018

Bài này là bài ktra hk 2 của mình 

7 tháng 4 2017

Bài 1:

\(f\left(x\right)=x^2+8x+25\)

Cho \(f\left(x\right)=0\Rightarrow x^2+8x+25=0\)

\(\Rightarrow x^2+8x+16+9=0\)

\(\Rightarrow\left(x+4\right)^2+9=0\)

Dễ thấy: \(\left(x+4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+4\right)^2+9\ge9>0\forall x\) ( vô nghiệm )

Vậy đa thức \(f\left(x\right)=x^2+8x+25\) không có nghiệm

Bài 2:

\(f\left(x\right)=x^{14}-14x^{13}+14x^{12}-...+14x^2-14x+14\)

\(f\left(x\right)=x^{14}-\left(13+1\right)x^{13}+\left(13+1\right)x^{12}-...+\left(13+1\right)x^2-\left(13+1\right)x+\left(13+1\right)\)

Do \(f\left(x\right)=13\) nên ta chỗ nào có \(13\) ta thay bằng \(x\)

\(f\left(13\right)=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)

\(f\left(13\right)=x^{14}-x^{14}-x^3+x^{13}+x^{12}-...+x^3+x^2-x^2-x+x+1=1\)

Vậy \(f\left(13\right)=1\)

18 tháng 1 2019

lời giải nè

f(x)=x14-(13+1)x13+(13+1)x12-....+(13+1)x2-(13+1)x+(13+1)

mà theo đầu bài f(x)=13 => chỗ nào có 13 ta thay thành x

=>f(13)=x14-(x+1)x13+(x+1)x13-.......+(x+1)x2-(x+1)x+(x+1)

<=>f(13)=x14-x14-x13+x14+x13-.......+x3_x2-x2-x+x+1=1

=>f(13)=1

k cho mk nha!!!

TL

T i k cho mik ik rồi mik Trả lời cho

#Kirito

x=13 nên x+1=14

\(M=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-1\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-1\)

=x-1

=13-1=12

20 tháng 10 2018

Cách 1: Thực hiện phép chia: \(f\left(x\right):g\left(x\right)=x-2\)

Cách 2:

 \(f\left(x\right)=x^3-x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

Khi đó: \(f\left(x\right):g\left(x\right)=x-2\)

12 tháng 12 2016

sr mk nhầm đề

12 tháng 12 2016

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy 
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y 
tương tự: 
+) 2yz ≤ y² + z² 
+) 2xz ≤ x² + z² 

cộng 3 vế của 3 bđt trên 
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²) 
--> xy + yz + xz ≤ x² + y² + z² 
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz 
--> 3(xy + yz + xz) ≤ (x + y + z)² 
--> 3(xy + yz + xz) ≤ 3² 
--> xy + yz + xz ≤ 3 

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1 

:D