K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2023

a) Ta có : AM\(//\) DE

⇒ góc BAM = góc BED ( 2 góc ở vị trí đồng vị )

Xét ΔBDE và ΔBMA có :

           góc BAM = góc BED (cmt)

          góc EBD : góc chung

⇒Δ\(BDE\sim\) Δ\(BMA\)

b) Ta có : DF \(//\) AM (\(ED//AM\) )

\(\dfrac{CM}{DC}\text{=}\dfrac{AM}{DF}\)

\(\Rightarrow\dfrac{DF}{AM}\text{=}\dfrac{CD}{CM}\)

 

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Lời giải:

a) Áp dụng định lý Talet cho:

Tam giác $CFD$ có $AM\parallel FD$:

$\frac{DF}{AM}=\frac{CD}{CM}(1)$

Tam giác $ABM$ có $ED\parallel AM$:

$\frac{ED}{AM}=\frac{BD}{BM}(2)$

Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$

$\Rightarrow DE+DF=2AM$ 

Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động

b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$

Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:

$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$

Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$

$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$

Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$

$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$

 

 

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Hình vẽ:
undefined

9 tháng 8 2019

ai giải câu này giùm mình vs

9 tháng 8 2019

nhanh nhanh vs aaaaaa

15 tháng 8 2019

Vào đây nè: để e gửi chi.

https://diendantoanhoc.net/topic/176959-cho-tam-giác-abc-đường-trung-tuyến-am-qua-điểm-d-thuộc-cạnh-bc-vẽ-đường-thẳng-song-song-với-am-cắt-đường-thẳng/

4 tháng 3 2019

a) Ta có:
{ DE song song với AM (gt) => DE/ AM = BD / BM (Định lí Thalès)
{ DF song song với AM (gt) => DF / AM = CD / CM (Định lí Thalès)
=> DE / AM + DF / AM = BD / BM + CD / CM
<=> (DE + DF) / AM = BD / (BC/2) + CD / (BC/2) = (BD + CD) / (BC/2)
(Vì AM là trung tuyến trong tam giác ABC => M là trung điểm của BC => BM = CM = BC/2)
<=> (DE + DF) / AM = BC / (BC/2) = 2BC / BC = 2
<=> DE + DF = 2AM (điều phải chứng minh)

b)
- Xét tứ giác ANDM có: AN // DM (gt) và DN // AM (gt)
=> Tứ giác ANDM là hình bình hành => AN = DM

- Ta có: AN // BD (gt)
=> AN / BD = NE / DE (Định lí Thalès)
<=> NE = (DE . AN) / BD
- Ta có: DE + DF = 2AM (cm câu a)
<=> DE + (DE + NE + NF) = 2AM
<=> 2DE + EF = 2AM
<=> EF = 2AM - 2DE = 2(AM - DE)
<=> EF = 2. {[(DE . BM) / BD] - DE} = 2. [(DE . BM - DE . BD) / BD]
(do DE/ AM = BD / BM => AM = (DE . BM) / BD )
<=> EF = 2. [DE . (BM - BD) / BD]
<=> EF = 2. (DE . DM) / BD = 2 . (DE . AN) / BD (vì AN = DM)
<=> EF = 2NE
<=> NE = EF / 2
Vậy N là trung điểm của EF

23 tháng 1 2022

Ta có:IE//BM

Áp dụng hệ quả định lý Ta-lét ta có:\(\dfrac{EI}{BM}=\dfrac{AI}{AM}\)(1)

Ta có:IF//MC

Áp dụng hệ quả định lý Ta-lét ta có:\(\dfrac{FI}{CM}=\dfrac{AI}{AM}\)(2)

Từ (1) và (2) \(\Rightarrow\dfrac{EI}{BM}=\dfrac{IF}{MC}\)

Mà BM=MC(gt) \(\Rightarrow EI=IF\)

 

23 tháng 1 2022

Định lí Talet đko :))