K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

Có thể đề là: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.....\frac{31}{64}=2^n\)

=> \(\frac{1.2.3.4....31}{\left(2.2\right)\left(2.3\right).\left(2.3\right)\left(2.4\right)\left(2.5\right)...\left(2.31\right).\left(2.32\right)}=2^n\)

=> \(\frac{1.2.3.4...31}{2^{16}.\left(2.3.4.5..31.32\right)}=2^n\) => \(\frac{1}{2^{16}.32}=2^n\) => 216.25.2n = 1

=> 231+n = 1 = 20  => 31 + n = 0 => n = -31 

27 tháng 6 2015

\(=\frac{1.2.3.....30}{4.6.8....64}=\frac{1}{2.2...2.64}=\frac{1}{2^{30}.2^6}=\frac{1}{2^{36}}\) ( 30 số 2)

=> 2^n = 1/2^36 

=> n = -36

26 tháng 1 2017

1/4.2/6.3/8.4/10.........30/62.31/64=4x

=1/2.1/2.1/2.1/2.............1/2.1/64=4^x

=1/2^30.1/2^6=4^x

=1/2^36=4^x

=1/4^18=4^x

=>x=-18

22 tháng 6 2017

tại s lại là 1/2 hết????

20 tháng 7 2019

1. Tìm x, biết :

a. ( x - \(\frac{3}{4}\)\(^2\)= 0

=> x - \(\frac{3}{4}\)= 0

=> x = 0 + \(\frac{3}{4}\)

=> x = \(\frac{3}{4}\)

b. ( x + \(\frac{1}{2}\)\(^2\)\(\frac{9}{64}\)

=> ( x + \(\frac{1}{2}\)\(^2\)= ( \(\frac{3}{8}\)\(^2\)

=> x + \(\frac{1}{2}\)\(\frac{3}{8}\)

=> x = \(\frac{3}{8}\)\(\frac{1}{2}\)

=> x = \(\frac{-1}{8}\)

c.  \(\frac{\left(-2\right)^x}{16}=-8\)

=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)

=> ( -2)\(^x\)= -128

=> ( -2 ) \(^x\)= ( -2) \(^7\)

=> x = 7

17 tháng 3 2020

\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}=2^x\)

=>\(\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}.\frac{4}{2.5}.\frac{5}{2.6}....\frac{30}{2.31}.\frac{31}{2.32}=2^x\)

=>\(\frac{1.2.3.4.5....30.31}{2.2.2.3.2.4.2.5.2.6...2.31.2.32}=2^x\)

=>\(\frac{2.3.4.5...30.31}{2^{31}.32.\left(2.3.4.5...31\right)}=2^x\)

=>\(\frac{1}{2^{31}.2^5}=2^x\)

=>\(\frac{1}{2^{36}}=2^x\)

=> x=36

Vậy x=36

Chúc bn học tốt nhé!hihi

3 tháng 7 2017

\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)

\(=\frac{1.2.3.4...30.31}{2.2.2.3.2.4.2.5...2.31.2.32}\)

\(=\frac{1.2.3.4...30.31}{2^{31}.\left(2.3.4.5...31\right).32}\)

\(=\frac{1}{2^{31}.32}\)

\(=\frac{1}{2^{31}.2^5}\)

\(=\frac{1}{2^{36}}\)

9 tháng 5 2016

\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}.\frac{5}{12}.....\frac{30}{62}.\frac{31}{64}\)

\(=\frac{1.2.3.4....30.31}{4.6.8.10.12....62.64}\)

\(=\frac{1.\left(2.3.4.5....30.31\right)}{2.\left(2.3.4....30.31\right).64}\)

\(=\frac{1}{2.64}\)

\(=\frac{1}{128}\)

9 tháng 5 2016

Bạn làm sai rồi

12 tháng 5 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{n\left(n+1\right)}=\frac{1999}{2001}\)                                                                                                                                 <=>\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.......+\frac{2}{n\left(n+1\right)}=\frac{1999}{2001}\)

<=>\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{n\left(n+1\right)}\right)=\frac{1999}{2001}\)

<=>\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+.....\frac{1}{n}-\frac{1}{n-1}\right)=\frac{1999}{2001}\)

<=>\(2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{1999}{2001}\)

<=>\(\frac{1}{2}-\frac{1}{n+1}=\frac{1999}{4002}\)

<=>\(\frac{1}{n+1}=\frac{1}{2001}\)

<=>n+1   =2001

<=>n      = 2000

12 tháng 5 2016

ta có:

 \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{n\left(n+1\right)}=\frac{1999}{2001}\)

\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{1999}{2001}\)

\(\frac{1}{2.3}+\frac{1}{2.6}+\frac{1}{2.10}+...+\frac{1}{n\left(n+1\right)}=\frac{1999}{4002}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n\left(n+1\right)}=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{n+1}=\frac{1999}{4002}\)

\(\frac{1}{n+1}=\frac{1}{2}-\frac{1999}{4002}\)

\(\frac{1}{n+1}=\frac{1}{2001}\)

=>\(n+1=2001\)

=>\(n=2000\)