K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017
  • Với \(a\) hoặc \(b=1\Rightarrow P=1\)
  • Ta có: 

\(\frac{ab+1}{a+b}< \frac{3}{2}\Rightarrow2ab+2< 3a+3b\Rightarrow2ab+2-3a-3b< 0\)

\(\Leftrightarrow a\left(2b-3\right)+2-3b< 0\Rightarrow2a\left(2b-3\right)+4-6b< 0\)

\(\Leftrightarrow2a\left(2b-3\right)-3\left(2b-3\right)< 5\Leftrightarrow\left(2a-3\right)\left(2b-3\right)< 5\)

Giả sử \(a\le b\Rightarrow-1\le2a-3\le2b-3\)(vì a,b nguyên dương)

  1. Nếu \(2a-3=-1\Rightarrow a=1\Rightarrow P=1\left(1\right)\)
  2. Nếu \(2a-3=1\Rightarrow a=2\)

+)Nếu \(2b-3=1\Rightarrow b=2\Rightarrow P=\frac{65}{16}\left(2\right)\)

+)Nếu \(2b-3=3\Rightarrow b=3\Rightarrow P=\frac{31}{5}\left(3\right)\)

Vậy so sánh \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow P_{Max}=\frac{31}{5}\)

DD
25 tháng 7 2021

Do vai trò của \(a,b\)là như nhau nên giả sử \(a\ge b\).

Ta có nhận xét rằng \(ab\)lớn nhất khi giá trị của \(a\)và \(b\)bằng nhau hoặc \(a-b=1\).

Nếu \(a-b>1\): ta thay tích \(ab\)bởi tích \(\left(a-1\right)\left(b+1\right)\)được

\(\left(a-1\right)\left(b+1\right)-ab=ab+a-b-1-ab=a-b-1>0\)

do đó \(a-b\le1\).

Vì \(a,b\)là số tự nhiên mà \(a+b=2019\)là số lẻ nên \(P\)đặt max tại \(a-b=1\)

\(\Rightarrow\hept{\begin{cases}a=1010\\b=1009\end{cases}}\)

Vậy \(maxP=1010.1009\).

18 tháng 9 2016

Hỏi nhanh thế

NV
15 tháng 4 2022

\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)

\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)

Ta dễ dàng chứng minh được:

\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)

\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)

Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)

Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)

\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\) 

\(\Rightarrow b^2=4m\)

\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)

Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)

\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)

Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương

NV
16 tháng 4 2022

Mải làm quên mất, cứ nghĩ là bài yêu cầu tìm nghiệm nguyên của pt

Nếu chỉ cần chứng minh A nguyên dương thì ko cần 3 dòng cuối nữa, đến đoạn \(m=k^2\) là số chính phương là xong rồi

5 tháng 12 2020

Đặt \(x=\sqrt{bc};y=\sqrt{ca};z=\sqrt{ab}\)\(\Rightarrow x^2+y^2+z^2+xyz=4\)\(\Rightarrow\left(x+y+z\right)^2-4=2\left(xy+yz+zx\right)-xyz\)

\(\Rightarrow\left(x+y+z\right)^2-4\left(x+y-z\right)+4=\left(2-x\right)\left(2-y\right)\left(2-z\right)\)\(\le\left(\frac{6-x-y-z}{3}\right)^3\)

Đặt \(t=x+y+z\Rightarrow\left(t-6\right)^3+27\left(t^2-4t+4\right)\le0\)\(\Leftrightarrow\left(t-3\right)\left(t+6\right)^2\le0\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\left(đpcm\right)\)

Dấu '=' xảy ra <=> a=b=c=1

5 tháng 12 2020

Mình chưa hiểu ở dòng thứ 3 tại sao bạn lại đánh giá đc nó nhỏ hơn hoặc bằng \(\left(\frac{6-x-y-z}{3}\right)^3\)

15 tháng 5 2016

Toán lớp 9