x^2 - 5^x = o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>(x-1)(x+32)>0
=>x>1 hoặc x<-32
c: =>(x+243)(x+1)<0
=>-243<x<-1
\(\begin{array}{l} n) \Leftrightarrow \dfrac{{x + 1}}{7} + 1 + \dfrac{{x + 2}}{6} + 1 = \dfrac{{x + 3}}{5} + 1 + \dfrac{{x + 4}}{4} + 1\\ \Leftrightarrow \dfrac{{x + 8}}{7} + \dfrac{{x + 8}}{6} - \dfrac{{x + 8}}{5} - \dfrac{{x + 8}}{4} = 0\\ \Leftrightarrow \left( {x + 8} \right)\underbrace {\left( {\dfrac{1}{7} + \dfrac{1}{8} - \dfrac{1}{5} - \dfrac{1}{6}} \right)}_{ < 0} = 0\\ \Leftrightarrow x + 8 = 0\\ \Leftrightarrow x = - 8 \end{array}\)
k/
\(8-\dfrac{x-2}{3}=\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{96}{12}-\dfrac{4\left(x-2\right)}{12}=\dfrac{3x}{12}\)
\(\Leftrightarrow96-4x+8=3x\)
\(\Leftrightarrow96-4x+8-3x=0\)
\(\Leftrightarrow104-7x=0\)
\(\Leftrightarrow7x=104\)
\(\Leftrightarrow x=104:7\)
\(\Leftrightarrow x=\dfrac{104}{7}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{104}{7}\right\}\)
m/
\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow9x+6-3x-1-12x-10=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{5}{6}\right\}\)
a)x.(x+2)+x-2=0
\(\Leftrightarrow x^2+2x+x-2=0\)
\(\Leftrightarrow x^2+3x-2=0\)
\(\Delta=3^2-\left(-4\left(1.2\right)\right)=17\)
\(x_{1,2}=\frac{-3\pm\sqrt{17}}{2}\)
\(FeCO_3+2HCl\rightarrow FeCl_2+CO_2+H_2O\)
\(FeCl_2+2NaOH\rightarrow Fe\left(OH\right)_2+NaCl\)
\(2FeCl_2+Cl_2\rightarrow2FeCl_3\)
\(4Fe\left(OH\right)_2+2H_2O+O_2\rightarrow4Fe\left(OH\right)_3\)
\(CO_2+Ba\left(OH\right)_2\rightarrow Ba\left(HCO_3\right)_2\)
\(Ba\left(HCO_3\right)_2+NaOH\rightarrow BaCO_3+Na_2CO_3+H_2O\)
\(BaCO_3+2HCl\rightarrow CO_2+BaCl_2+H_2O\)
\(2FeCl_3+3Na_2CO_3+H_2O\rightarrow6NaCl+Fe_2\left(CO_3\right)_3\)
\(x^2-5x=0\)
\(\Leftrightarrow x.\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)