K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

\(VP=3-\left(y^2-2y+1\right)=3-\left(y-1\right)^2\le3\)(Dấu "=" xảy ra khi \(y=1\)

Nhìn đề bài ta đoán dạng bất đẳng thức, có \(VP\le3\), giờ ta chứng minh \(VT\ge3\)

Thật vậy, ta có

 \(\frac{4x^2-4x+7}{x^2+1}-3=\frac{4x^2-4x+7-3\left(x^2+1\right)}{x^2+1}=\frac{x^2-4x+4}{x^2+1}\)

\(=\frac{\left(x-2\right)^2}{x^2+1}\ge0\)

Do đó; \(\frac{4x^2-4x+7}{x^2+1}\ge3\)(dấu "=" xảy ra khi \(x=2\))

\(\Rightarrow\frac{4x^2-4x+7}{x^2+1}\ge3\ge2+2y-y^2\)

\(VT=VP\Leftrightarrow VT=3;VP=3\)

\(\Leftrightarrow x=3;y=1\)

 

 

23 tháng 3 2021

a) Xét hiệu A - B

= 2x - 3 - (6-x)  = 3x-9

Nếu x < 3 => 3x - 9 < 3.3-9 = 0 => A < B

Nếu x = 3 thì 3x - 9 = 0 => A = B

Nếu x > 3 thì 3x - 9 >0 => A > B

Vậy .....

b) 

Để A.B > 0

=> (2x-3)(6-x) > 0

\(\left\{{}\begin{matrix}2x-3>0\\6-x>0\end{matrix}\right.hoặc\left\{{}\begin{matrix}2x-3< 0\\6-x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< 6\end{matrix}\right.\Leftrightarrow\dfrac{3}{2}< x< 6\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>6\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)

Vậy \(\dfrac{3}{2}< x< 6\) là giá trị cần tìm

23 tháng 3 2021

Cảm ơn ạ

 

21 tháng 4 2015

dùng tính chất chia hết

7 y  chia hét cho 7   ;   112 chia hết cho 7 

=> 5 x phải chia hết  cho 7  => x chia hết cho 7  => x = 7k

=>  x = 7k

      y= (112-35k)  /  7

15 tháng 3 2023

wdwwđwdsswsw

14 tháng 3 2019

31 tháng 12 2017

13 tháng 6 2017

Đáp án D

21 tháng 3 2021

Ta có P có giá trị dương=> P>0

=> (2x-1)và(5-2x) cùng dấu âm hoặc dương

Xét (2x-1)>0=>x>\(\dfrac{1}{2}\)(1)

      (5-2x)>0=>x<\(\dfrac{5}{2}\) (2)

 Từ (1) và (2) =>x=1 hoặc x=2

    Xét (2x-1)<0=>x<\(\dfrac{1}{2}\)(3)

           (5x-2)<0=>x>\(\dfrac{5}{2}\)(4)

Từ (3) và (4) => x ko có giá trị nào

 Vậy x=1 hoặc x=2