Tìm Số tự nhiên n để phân số A=\(\dfrac{n+2}{n-1}\) có giá trị là 1 số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
A = \(\dfrac{n+2}{n-1}=\dfrac{n-1+3}{n-1}=1+\dfrac{3}{n-1}\)
Để A là số nguyên thì \(3⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(3\right)\)
\(\Leftrightarrow n-1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow n\in\left\{2;4;0;-2\right\}\)
có: A=\(\dfrac{n+2}{n-1}\)=\(\dfrac{n-1+3}{n-1}\)=\(1+\dfrac{3}{n-1}\)
Để A nhận giá trị nguyên thì 3/n-1 có giá trị nguyên
=> n-1ϵƯ(3)
Ta có bảng sau:
Vậy nϵ\(\left\{-2;0;2;4\right\}\)