K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

A B C D E M N K F

Gọi giao điểm của tia AE và tia CD là F. 

Dễ thấy: Tứ giác ABDC là hình vuông => AB=BD=DC=CA

Xét \(\Delta\)ABE và \(\Delta\)FDE có: ^ABE = ^FDE (=900), BE=DE; ^AEB = ^FED => \(\Delta\)ABE = \(\Delta\)FDE (g.c.g)

=> AB=FD (2 cạnh tương ứng) => FD=CD => D là trung điểm CF.

Xét \(\Delta\) CMF vuông tại M có trung tuyến MD => MD = CD => DM=DC=DB

\(\Rightarrow\widehat{BMC}=\widehat{DMB}+\widehat{DMC}=\frac{180^0-\widehat{BDM}}{2}+\frac{180^0-\widehat{CDM}}{2}=135^0\)

=> ^KMN = 450. Lại có: \(\Delta\)CDM cân tại D có trung tuyến DN => DN vuông góc CM => ^MNK = 900

Suy ra: \(\Delta\)MNK vuông cân tại N => ^MKN = 450.Hay ^BKD = 450.

Vậy ^BKD = 450.