Cho tam giác ABC vuông cân tại A. Trên nửa mặt phẳng bờ AB có chứa điểm C vẽ tam giác ABD vuông cân ở B. Gọi E là trung điểm của đoạn thẳng BD. Vẽ CM vuông góc với AE tại M. Gọi N là trung điểm của đoạn thẳng CM, K là giao điểm của BM và DN. Tính số đo góc BKD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của tia AE và tia CD là F.
Dễ thấy: Tứ giác ABDC là hình vuông => AB=BD=DC=CA
Xét \(\Delta\)ABE và \(\Delta\)FDE có: ^ABE = ^FDE (=900), BE=DE; ^AEB = ^FED => \(\Delta\)ABE = \(\Delta\)FDE (g.c.g)
=> AB=FD (2 cạnh tương ứng) => FD=CD => D là trung điểm CF.
Xét \(\Delta\) CMF vuông tại M có trung tuyến MD => MD = CD => DM=DC=DB
\(\Rightarrow\widehat{BMC}=\widehat{DMB}+\widehat{DMC}=\frac{180^0-\widehat{BDM}}{2}+\frac{180^0-\widehat{CDM}}{2}=135^0\)
=> ^KMN = 450. Lại có: \(\Delta\)CDM cân tại D có trung tuyến DN => DN vuông góc CM => ^MNK = 900
Suy ra: \(\Delta\)MNK vuông cân tại N => ^MKN = 450.Hay ^BKD = 450.
Vậy ^BKD = 450.