A = (1+ 1/1x3) x ( 1 + 1/2x4) + ..... + (1 + 1/2018x2020)
Tính A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kiến thức lớp 8 chắc mới làm dc
\(A=\left(1+\frac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(1+\frac{1}{\left(3-1\right)\left(3+1\right)}\right)+....+\frac{1}{\left(100-1\right)\left(100+1\right)}\)
\(A=\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{3^2}\right)......\left(1+\frac{1}{100^2}\right)\)
ok tự giải típ nhé
A=(1+1/1.3)+........+(1+1/99.100)
=>A=[ (1.3+1)/(1.3 ) ] .[ (2.4+1)/(2.4) ] .... [ (99.101+1)/(99.101) ]
=>A=( 4/1.3 ).( 9/2.4)......( 10000/99.101)
=>A=( 22/1.3).( 32/2..4).......( 1002/99.101)
=>A=\(\frac{2^2.3^2........99^2.100^2}{1.3.2.4.....99.101}\)
=>A=\(\frac{2.3....100.2.3.....100}{1.2.....99.3.4.....101}\)
=>A=\(\frac{100.2}{101}\)
=>A=\(\frac{200}{101}\)
Vậy A=\(\frac{200}{101}\)
\(A=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\frac{1}{99\cdot101}\right)\)
\(A=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{10000}{99\cdot101}\)
\(A=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)\cdot...\cdot\left(100\cdot100\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)\cdot...\cdot\left(99\cdot101\right)}\)
\(A=\frac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot...\cdot101\right)}\)
\(A=\frac{100\cdot2}{1\cdot101}\)
\(A=\frac{200}{101}\)