Cho tam giác ABC vuông tại A, biết AB=6cm, AC= 8cm, vẽ đường cao AH, đường tròn tâm O, đường kính AH cắt AB tại E, AC tại F. C/m tứ giác BEFC nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(\widehat{AEH}v\text{à}\widehat{\text{AF}H}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat{AEH}=\widehat{\text{AF}H}=90^o\)\(\Rightarrow\)Tứ giác AEHF là hình chữ nhật suy ra \(\widehat{AFE}=\widehat{EHA}\) mà \(\widehat{EHA}=\widehat{EBC}\)(cùng phụ với \(\widehat{BHE}\))
nên \(\widehat{\text{AF}E}=\widehat{EBC}\)
Do đó tứ giác BEFC nội tiếp
a: góc BEC=1/2*180=90 độ
=>CE vuông góc AB
góc BFC=1/2*180=90 độ
=>BF vuông góc AC
góc BEC=góc BFC=90 độ
=>BEFC nội tiếp
góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có
góc A chung
=>ΔAEC đồng dạng với ΔAFB
=>AE/AF=AC/AB
=>AE*AB=AF*AC
c: góc BHC=góc BOC
góc BHC+góc BAC=180 độ
=>góc BOC+góc BAC=180 độ
=>góc BAC=60 độ
=>góc KOC=60 độ
=>OK/OC=1/2
a: góc AEH=1/2*180=90 độ
=>HE vuông góc AB
góc AFH=1/2*180=90 độ
=>HF vuông góc AC
Vì góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
b: AEHF làhình chữ nhật
=>góc AFE=góc AHE=góc B
=>góc B+góc FCB=180 độ
=>BEFC nội tiếp
a: góc HEB=1/2*180=90 độ
=>HE vuông góc AB
góc CFH=1/2*180=90 độ
=>HF vuông góc AC
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hcn
b: góc AEF=góc AHF=góc C
=>góc FEB+góc C=180 độ
=>FEBC nội tiếp
c: gọi I,K lần lượt là trung điểm của BH,CH
góc IEF=góc IEH+góc FEH
=góc IHE+góc FAH
=góc HAC+góc HCA=90 độ
=>FE là tiếp tuyến của (I)
góc KFE=góc KFH+góc EFH
=góc KHF+góc EAH
=góc HAB+góc HBA=90 độ
=>EF là tiếp tuyến của (K)
a, ta có : góc CFH=90°; góc HEB=90°(góc nội tiếp chắn 1/2đtròn)
xét tứ giác AEHF có góc A=gócE=góc F=90°
suy ra AEHF là hcn.
b, vì AEHF là hcn suy ra AEHF nội tiếp suy ra góc AFE=AHE( góc nội tiếp chắn cung AE) (1)
ta lại có: góc AHE=ABH(cùng bù với BAH) (2)
từ 1 và 2 suy ra góc AFE=ABH
mà góc CFE+AFE=180°
suy ra góc CFE+ABH=180°
suy ra BEFC nội tiếp
c, gọi I và K lần lượt là tâm đtròn đường kính HB và HC
gọi O là giao điểm AH và EF
vì AEHF là hcn suy ra OF=OH suy ra tam giác FOH cân tại O
suy ra góc OFH=OHF
vì CFH vuông tại F suy ra KC=KF=KH
suy ra tam giác HKF cân tại K
suy ra góc KFH=KHF
mà góc KHF+FHA=90°
suy ra góc KFH+HFO=90°
suy ra EF là tiếp tuyến của đtròn tâm K
tương tự EF là tiếp tuyến đường tròn tâm I
vậy EF là tiếp tuyến chung của hai nửa đường tròn đường kính HB và HC
a)
1. Ta có : ÐBEH = 900 ( nội tiếp chắn nửc đường tròn )
=> ÐAEH = 900 (vì là hai góc kề bù). (1)
ÐCFH = 900 ( nội tiếp chắn nửc đường tròn )
=> ÐAFH = 900 (vì là hai góc kề bù).(2)
ÐEAF = 900 ( Vì tam giác ABC vuông tại A) (3)
Từ (1), (2), (3) => tứ giác AFHE là hình chữ nhật ( vì có ba góc vuông)
b) Tứ giác AFHE là hình chữ nhật nên nội tiếp được một đường tròn
=>ÐF1=ÐH1 (nội tiếp chắn cung AE) .
Theo giả thiết AH ^BC nên AH là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)
=> ÐB1 = ÐH1 (hai góc nội tiếp cùng chắn cung HE) => ÐB1= ÐF1 => ÐEBC+ÐEFC = ÐAFE + ÐEFC màÐAFE + ÐEFC = 1800 (vì là hai góc kề bù) => ÐEBC+ÐEFC = 1800 mặt khác ÐEBC và ÐEFC là hai góc đối của tứ giác BEFC do đó BEFC là tứ giác nội tiếp.
c)
Tứ giác AFHE là hình chữ nhật => IE = EH => DIEH cân tại I => ÐE1 = ÐH1 .
DO1EH cân tại O1 (vì có O1E vàO1H cùng là bán kính) => ÐE2 = ÐH2.
=> ÐE1 + ÐE2 = ÐH1 + ÐH2 mà ÐH1 + ÐH2 = ÐAHB = 900 => ÐE1 + ÐE2 = ÐO1EF = 900
=> O1E ^EF .
Chứng minh tương tự ta còng có O2F ^ EF. Vậy EF là tiếp tuyến chung của hai nửa đường tròndường kính BH và HC.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)