Tìm các số nguyên a,b biết rằng :
\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+3}\)
Giải chi tiết giúp mình nhé ^.^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)<=> \(\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\)
<=> \(\frac{1}{x}=\frac{2+y}{6}\)<=> \(x\left(2+y\right)=6\)
Mà x, y nguyên => x và y+2 \(\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
thay vào ta tìm được các cặp x,y.
b) Ta có: \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)<=> \(\frac{3}{y}=\frac{5}{4}-\frac{x}{2}\)
<=> \(\frac{3}{y}=\frac{5-2x}{4}\)
<=> \(y\left(5-2x\right)=12\)
vì x,y nguyên , 5-2x luôn lẻ => 5-2x \(\inƯ_{\left(12\right)}=\left\{\pm1;\pm3\right\}\)
Thay vào ta tìm được các cặp x,y.
\(\frac{28}{14}=2\)
\(\frac{5}{2}:2=\frac{5}{4}\)
\(\frac{8}{4}=2\)
\(\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\)
\(\frac{3}{10}\)
\(\frac{21}{10}:7=\frac{3}{10}\)
\(3:\frac{3}{10}=\frac{1}{10}\)
từ đó ta có các tỉ lệ thức bằng nhau là:
28:14=8:4
3:10=2,1:7
Mình không bày bn cách giải, nhưng sẽ gợi ý:
2 bài tương tự nhau, mẫu gấp nhau 3 lần nhé
\(\Rightarrow A=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+\frac{1}{\frac{\left(4+1\right).4}{2}}+...+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)
\(=\frac{2}{\left(2+1\right).2}+\frac{2}{\left(3+1\right).3}+\frac{2}{\left(4+1\right).4}+...+\frac{2}{\left(99+1\right).99}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\frac{49}{100}+\frac{1}{50}\)
\(=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
Vậy A=1.
Cái này có trong violympic vòng 10..bạn nhớ ôn cho kĩ nếu như bạn thi violympic!
Ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
...
\(\frac{1}{2014^2}<\frac{1}{2013.2014}\)
Cộng vế theo vế ta được
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}<1\)
Ta có : \(A\)\(\ge0\) và \(A<1\left(cmt\right)\)
=> [A]=0