K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

n=4 dung 100%

18 tháng 3 2017

có cách làm ko bạn

11 tháng 4 2017

xét \(\frac{a}{n.\left(n+a\right)}=\frac{\left(n+a\right)-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

vậy ............................

27 tháng 12 2015

\(\frac{a}{n+2}=\frac{b}{n+5}=\frac{c}{n+8}=k\Leftrightarrow a=nk+2k;b=nk=5k;c=nk+8k\)

\(\left(a+c\right)^2=\left(nk+2k+nk+8k\right)^2=4k^2\left(n+5\right)^2\) ( sai nhế)

\(4\left(a-b\right)\left(b-c\right)=4\left(nk+2k-nk-5k\right)\left(nk+5k-nk-8k\right)=4\left(-3k\right)\left(-3k\right)=36k^2\)

\(\left(a-c\right)^2=\left(nk+2k-nk-8k\right)^2=4\left(-6k\right)^2=36k^2\)

=> \(\left(a-c\right)^2=4\left(a-b\right)\left(b-c\right)\)

 

27 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)

\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)

27 tháng 1 2017

chết phần a quên nhân vs 1/3

26 tháng 2 2018

Ta có : 

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)

\(A< \frac{1}{4}-\frac{1}{4n}\)

Lại có \(n>0\) nên \(\frac{1}{4n}>0\)

\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)