Cho phương trình \(^{x^2-2x+2m-1=0}\)
Tìm m / \(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=2\)
BẠN NÀO TRẢ LỜI ĐÚNG VÀ NHANH NHẤT MÌNH TÍCH CHO !!! :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)
\(\Leftrightarrow4m^2+12m+21>0\)
\(\Leftrightarrow4m^2+12m+9+12>0\)
<=> \(\left(2m+3\right)^2+12>0\)
Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)
Theo đề:
\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))
=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)
<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)
=> \(M\ge2\).
Dấu "=" xảy ra khi m = 0
Thế m = 0 vào phương trình ở đề được:
\(x^2-5x+1=0\)
Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.
Vậy min M = 2 và m = 0
☕T.Lam
Phương trình có 2 nghiệm phân biệt ⇔ △ > 0
⇔ 4m2 + 20m + 25 - 8m - 4 > 0
⇔ 4m2 + 12m + 21 > 0
⇔ (2m + 3)2 + 12 > 0 ⇔ m ∈ R
Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1.x_2=2m+1\end{matrix}\right.\)
=> P2 = (\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\))2 = (\(\sqrt{x_1}-\sqrt{x_2}\))2
= x1 + x2 - 2\(\sqrt{x_1.x_2}\)
= 2m + 5 - 2\(\sqrt{2m+1}\)
= 2m + 1 - 2\(\sqrt{2m+1}\) + 1 + 3
= (\(\sqrt{2m+1}\) - 1)2 + 3 ≥ 3 ∀m
=> P ≥ \(\sqrt{3}\)
Dấu "=" xảy ra ⇔ \(\sqrt{2m+1}\) - 1 = 0 ⇔ \(\sqrt{2m+1}\)=1 ⇔ 2m + 1 = 1 ⇔ m = 0
Vậy với m = 0 thì P đạt GTNN = \(\sqrt{3}\)
Cô hướng dẫn thôi nhé ^^
Coi phương trình trên là phương trình bậc hai với ẩn \(\sqrt{x}\)
Để phương trình trên có 2 nghiệm \(x_1;x_2\) thì nó phải có 2 nghiệm phân biệt cùng dương \(\sqrt{x _1};\sqrt{x_2}\).
Điều này tương đương \(\Delta>0,S>0,P>0\) hay \(\frac{9}{4}>m>\frac{3}{2}\)
Khi đó theo Viet ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{6}\); \(\sqrt{x_1x_2}=2m-3\)
Vậy điều kiện trên tương đương: \(\frac{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2-2\sqrt{x_1x_2}}{\sqrt{x_1}+\sqrt{x_2}}=\frac{\sqrt{24}}{3}\)
Thế vào ta có: \(\frac{6-2\left(2m-3\right)}{\sqrt{6}}=\frac{\sqrt{24}}{3}\Rightarrow12-4m=4\Rightarrow m=2\)
Chúc em học tốt ^^
\(2x^2+3mx-\sqrt{2}=0\)
Phương trình có 2 nghiệm phân biệt <=> \(\Delta=\left(3m\right)^2-4\cdot2\cdot\left(\sqrt{2}\right)>0\)
<=> \(9m^2+3\sqrt{2}>0\)(luôn đúng)
=> PT có 2 nghiệm phân biệt x1;x2 với mọi m \(\hept{\begin{cases}x_1+x_2=\frac{-3m}{2}\\x_1x_2=\frac{-\sqrt{2}}{2}\end{cases}}\)
\(M=\left(x_1-x_2\right)^2+\left(\frac{1+x_1^2}{x_1}-\frac{1+x_2^2}{x_2}\right)\)
\(=x_1^2+x_2^2-2x_1x_2+\left[\frac{x_2\left(1+x_1^2\right)-x_1\left(1+x_2^2\right)}{x_1x_2}\right]^2\)
\(=\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left(x_2+x_1+x_1^2x_2-x_1x_2^2\right)^2}{\left(x_1x_2\right)^2}\)
\(=\left(\frac{-3m}{2}\right)^2-4\cdot\left(\frac{\sqrt{2}}{2}\right)+\frac{\left(x_2-x_1\right)^2\cdot\left(1+x_1x_2\right)^2}{\left(x_1x_2\right)^2}\)
\(=\frac{9m^2}{4}+2\sqrt{2}+\frac{\left(\frac{9m^2}{4}+2\sqrt{2}\right)\left(1+\frac{-\sqrt{2}}{2}\right)^2}{\left(\frac{-\sqrt{2}}{2}\right)^2}\)
\(=\frac{9m^2}{4}+2\sqrt{2}+\left(\frac{9m^2}{4}+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\)
\(=\frac{9m^2}{4}\left(4-2\sqrt{2}\right)+2\sqrt{2}\left(4-2\sqrt{2}\right)\ge2\sqrt{2}\left(4-2\sqrt{2}\right)\ge8\sqrt{2}-8\)
Dấu "=" xảy ra <=> m=0
\(x^2-2\left(m+1\right)x+3m-3=0\left(1\right)\)
\(\Delta'>0\Leftrightarrow\left(m+1\right)^2-\left(3m-3\right)=m^2-m+4>0\left(đúng\forall m\right)\)
\(đk\) \(tồn\) \(tại:\sqrt{x1-1}+\sqrt{x2-1}\)
\(\Leftrightarrow1\le x1< x2\Leftrightarrow\left\{{}\begin{matrix}\left(x1-1\right)\left(x2-1\right)\ge0\\x1+x2-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x1x2-\left(x1+x2\right)+1\ge0\\2\left(m+1\right)-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3m-2-2\left(m+1\right)+1\ge0\\m>0\end{matrix}\right.\)
\(\Leftrightarrow m\ge4\)
\(\Rightarrow\sqrt{x1-1}+\sqrt{x2-1}=4\Leftrightarrow x1+x2-2+2\sqrt{\left(x1-1\right)\left(x2-1\right)}=16\)
\(\Leftrightarrow2\left(m+1\right)+2\sqrt{x1.x2-\left(x1+x2\right)+1}=18\)
\(\Leftrightarrow\left(m+1\right)+\sqrt{3m-3-2\left(m+1\right)+1}=9\)
\(\Leftrightarrow m-4+\sqrt{m-4}=4\)
\(đặt:\sqrt{m-4}=t\ge0\Rightarrow t^2+t=4\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1+\sqrt{17}}{21}\left(tm\right)\\t=\dfrac{-1-\sqrt{17}}{21}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{m-4}=\dfrac{-1+\sqrt{17}}{21}\Leftrightarrow m=....\)
\(\)
\(\Delta'=1-\left(2m-1\right)=2-2m\ge0\Rightarrow m\le1\)
Để biểu thức đề bài xác định thì pt có 2 nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2>0\\x_1x_2=2m-1>0\end{matrix}\right.\) \(\Rightarrow m>\frac{1}{2}\)
\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=2\Leftrightarrow\sqrt{x_1}+\sqrt{x_2}=2\sqrt{x_1x_2}\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=4x_1x_2\)
\(\Leftrightarrow2+2\sqrt{2m-1}=4\left(2m-1\right)\)
\(\Leftrightarrow2\left(2m-1\right)-\sqrt{2m-1}-1=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2m-1}=1\\\sqrt{2m-1}=-\frac{1}{2}\left(l\right)\end{matrix}\right.\) \(\Rightarrow m=1\) (thỏa mãn)
\(x_1+x_2=2\\x_1.x_2=2m-1 \)
\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=2\infty\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}=4\)
\(\approx\frac{x_1+x_2}{x_1x_2}+\frac{2}{\sqrt{2m-1}}=4\)
\(\approx\frac{2}{2m-1}+\frac{2}{\sqrt{2m-1}}=4\)
\(\approx\frac{1}{2m-1}+\frac{1}{\sqrt{2m-1}}=2\)
\(\Rightarrow m=1\)