(y+1/2)+(y+1/4)+(y+1/8)+(y+1/16)=1 Tìmy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
\(\left(y-1\right)\left(y+1\right)\left(y^2+1\right)\left(y^4+1\right)\left(y^8+1\right)=2^{16}-1\)
\(y^{16}+y^8+y^{12}+y^4-y^{12}-y^4-y^8-1=65535\)
\(y^{16}-1=65535\)
\(y^{16}=65536\)
\(y=\pm\sqrt[16]{65536}=\pm2\)
a: =>4y+15/16=1
=>4y=1/16
hay y=1/64
b: =>10y+1023/1024=1
=>10y=1/1024
hay y=1/10240
Bài 1 :
a ) Ta có :
\(\left(x+y\right)^2=x^2+y^2+2xy=20+16=36\)
b ) Ta có :
\(x^2+y^2=\left(x+y\right)^2-2xy=64-30=34\)
y x 4 + 1/2 + 1/4 + 1/8 +1/16 = 1
y x 4 + 15/16 = 1
y x 4 = 1/16
y = 1/16 : 4
y = 1/64
\(\left(y+\frac{1}{2}\right)+\left(y+\frac{1}{4}\right)+\left(y+\frac{1}{8}\right)+\left(y+\frac{1}{16}\right)=1\)
\(\Rightarrow4y+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4y+\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4y+\frac{15}{16}=1\)
\(\Leftrightarrow4y=\frac{1}{16}\)
\(\Leftrightarrow y=\frac{1}{64}\)