Chứng Tỏ Rằng (n.n)+ 5n chia hết cho n-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để 2n + 1 chia hết cho n - 5
<=> n + n - 5 - 5 + 11 chia hết cho n - 5
<=> ( n - 5 ) + ( n - 5 ) + 11 chia hết cho n - 5
=> 11 chia hết cho n - 5
<=> n - 5 là ước của 11
=> Ư(11) = ( 1;11 )
ta có n - 5 = 1 => n = 6 (TM)
n - 5 = 11 => n = 16 (TM)
Vậy n = 6;16
b) 3n - 5 chia hết cho n - 2
Để 3n - 5 chia hết cho n - 2
<=>n + n + n - 2 - 2 - 2 + 1 chia hết cho n - 2
<=>( n - 2 ) + ( n - 2 ) + ( n - 2 ) + 1 chia hết cho n - 2
=> 1 chia hết cho n - 2
<=>n - 2 là ước của 1
=> Ư(1) = 1
ta có n - 2 = 1 => n = 3 (TM)
Vậy n = 3
c) n.n + 5.n - 13 chia hết cho n + 2
<=>2.n + 5.n -13 chia hết cho n + 2
<=>7.n - 13 chia hết cho n + 2
Để 7n -13 chia hết cho n + 2
<=>n+n+n+n+n+n+n+2+2+2+2+2+2+2+1 chia hết cho n+2
<=>(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+1chia hết cho n+2
<=>1 chia hết cho n + 2
<=>n+2 là ước của 1
=>Ư(1) = 1
ta có n + 2 = 1 => n = ( - 1 ) (ktm)
vậy n = - 1
a)Nếu n=2k(kEN)
thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)
Nếu n=2k+1(kEN)
thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)
Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2
b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n
Nếu n=2k(kEN )
thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)
Nếu n=2k+1(kEN)
thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................
tương tự, n=3k;3k+1;3k+2
mỏi tay chết đi được, mấy con số còn bay đi lung tung
1, Ta có:\(\left(2n+7\right)⋮31\Rightarrow\left(2n+7\right)\inƯ\left(31\right)\)
\(\Leftrightarrow2n+7\in1;31\)
\(\Rightarrow n\in-3;12\)
Mà n là số tự nhiên nên n=12
Vậy n=12.
2,Ta có:n2+5n+5=n(n+5)+5
n(n+5) là tích của 2 số tự nhiên cách nhau 5 đơn vị nên tận cùng là 0,4,6.
Suy ra n(n+5)+5 tận cùng là 1;5;9.
Mà số chia hết cho 25 tận cùng là 25,50,75,00.
Nhưng trong các trường hợp trên thì trường hợp tận cùng là 5 cũng rất ít và nó càng không thể chia hết cho 25.
Vậy n2+5n+5 không chia hết cho 25.
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31
Ta xét trường hợp sau:
- Khi n chẵn thì tổng 5n+2 là một số chẵn nên chia hết cho 2
- Khi n lẻ thì tổng 3n+5 là một số chẵn nên chia hết cho 2
Ta thấy khi n thuộc N* thì một trong 2 thừa số của tích (3n+5).(5n+2) đều chia hết cho 2
Vậy (3n+5).(5n+2) chia hết cho 2
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2
a) (5n+7).(4n+6) = 2.(5n+7).(2n+3)
Vậy (5n+7).(4n+6) chia hết cho 2 với n thuộc N
b)(8n+1).(6n+5)
ta có
8n là số chẳn
=>8n+1 là số lẽ
hay 8n+1 không chia hết cho 2
lại có:
6n là số chẵn
=>6n+5 là số lẽ
hay 6n+5 không chia hết cho 2
suy ra (8n+1).(6n+5) không chia hêt cho 2 với n thuộc N
a)Ta có:(5n+7)(4n+6)=2.(5n+7)(2n+3) chia hết cho 2 với mọi n thuộc N(đpcm)
b)Do 8n là số chẵn với mọi n thuộc N=>8n+1 là số lẻ
Tương tự 6n+5 cũng là số lẻ
Mà tích 2 số lẻ là 1 số lẻ
Do tích 2 số lẻ không chia hết cho 2 nên
(8n+1)(6n+5) không chia hết cho 2 với mọi n thuộc N
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
Chứng minh rằng nếu (5n + 1) là số chẵn thì n là số lẻ.
Giải: Nếu 5n + 1 là số chẵn thì =>
5n + 1 có dạng 2k (k là số tự nhiên)
=> 5n + 1 = 2k
=> 5n = 2k - 1
Do 2k - 1 là số lẻ => 5n là số lẻ (1)
Nếu n là số chẵn thì 5n chẵn => mâu thuẩn với (1)
=> n phải là số lẻ