K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lấy A(1;0) thuộc Δ1

Vì Δ1//Δ2 nên d(A;Δ2)=d(Δ1;Δ2)

=>\(d\left(\text{Δ}_1;\text{Δ}_2\right)=\dfrac{\left|1\cdot2+0\cdot\left(-2\right)+3\right|}{\sqrt{2^2+\left(-2\right)^2}}=\dfrac{5}{2\sqrt{2}}=\dfrac{5\sqrt{2}}{4}\)

NV
29 tháng 3 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm

27 tháng 4 2017

Hỏi đáp Toán

26 tháng 5 2017

Hình giải tích trong không gian

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Hai đường thẳng nằm trên mặt phẳng tọa độ $Oxy$ mà cắt nhau thì làm sao có khoảng cách hả bạn?

22 tháng 3 2020

dạ , e hỏi bạn e thì nó bảo là chọn 1 điểm trên đường thẳng này rồi tìm khoảng cách từ điểm này đến đương thẳng kia ạ .

NV
23 tháng 3 2022

Lấy \(A\left(2;2\right)\) là 1 điểm thuộc \(\Delta_1\)

\(d\left(\Delta_1;\Delta_2\right)=d\left(A;\Delta_2\right)=\dfrac{\left|5.2-7.2+6\right|}{\sqrt{5^2+\left(-7\right)^2}}=\dfrac{\sqrt{74}}{37}\)