so sánh các số tự nhên a và b biết
\(\dfrac{1+2+3+...+a}{a}\) < \(\dfrac{1+2+3+...+b}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
A= số số hạng của A là (1000-1):1+1=1000
tổng A là: 1000+1x1000:2=500500
B=39916800
Vậy A<B
b, A<B
Co: \(\frac{1+2+3+...+a}{a}\)=\(\frac{1}{a}+\frac{2}{a}+\frac{3}{a}+...+\frac{a}{a}\)
\(\frac{1+2+3+...+b}{b}\)=\(a>b=>\frac{1}{a}< \frac{1}{b},\frac{2}{a}< \frac{2}{b},...\)
=>\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)
a
2/5> 2/7
5/9<5/6
11/2>11/3
cách so sánh :
sét mẫu số của phân số này bé hơn mẫu số của phân số kia thì phân số này lớn hơn
mẫu số của phân số này lớn hơn mẫu số của phân số kia thì phân số này bé hơn
Biện luận trước khi giải: \(a,b\inℕ^∗\). Khi a hoặc b bằng 0 thì biểu thức không xác định.
Bài làm:
Ta có \(1+2+3+...+a=\dfrac{a\left(a+1\right)}{2}\)
Và \(1+2+3+...+b=\dfrac{b\left(b+1\right)}{2}\)
Suy ra \(\dfrac{a\left(a+1\right)}{2a}< \dfrac{b\left(b+1\right)}{2b}\) <=> \(\dfrac{a+1}{2}< \dfrac{b+1}{2}\)
<=> \(a+1< b+1\) <=> a < b