P=P=(1-1/3)x(1-1/6)x(1-1/10)x...x(1-1/1225)x(1-1/1275)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{6}\right)+...+\left(1-\dfrac{1}{1225}\right)+\left(1-\dfrac{1}{1275}\right)\\ \Rightarrow\dfrac{P}{2}=\left(\dfrac{1}{2}-\dfrac{1}{6}\right)+\left(\dfrac{1}{2}-\dfrac{1}{12}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{2550}\right)\\ =\left(\dfrac{1}{2}-\dfrac{1}{2\cdot3}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3\cdot4}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{50\cdot51}\right)\\ =\dfrac{1}{2}\cdot49-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\\ =\dfrac{49}{2}-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\\ =\dfrac{49}{2}-\dfrac{1}{2}+\dfrac{1}{51}=\dfrac{1225}{51}\\ \Rightarrow P=\dfrac{2450}{51}\)
A= (1/3-1).(1/6-1).(1/10-1).(1/15-1)....(1/1225-1).(1/1275-1)
B=2^19.27^3-15.4^9.9^4 / 6^9.2^10-12^10
Bạn tham khảo câu trả lời tại đây nhé:
Câu hỏi của Trần Thị Phương - Toán lớp 6 - Học toán với OnlineMath
Học tốt mùa covid nha !!!!
\(B=\left(\frac{1}{3}-1\right).\left(\frac{1}{6}-1\right).\left(\frac{1}{10}-1\right).......\left(\frac{1}{1225}-1\right)\left(\frac{1}{1275}-1\right)\)
\(B=\frac{-2}{3}.\frac{-5}{6}.\frac{-9}{10}......\frac{-1224}{1225}.\frac{-1274}{1275}\)
\(B=\frac{-4}{6}.\frac{-10}{12}.\frac{-18}{20}......\frac{-2448}{2450}.\frac{-2548}{2550}\)
\(B=\frac{-4}{2.3}.\frac{-10}{3.4}.\frac{-18}{4.5}.....\frac{-2448}{49.50}.\frac{-2548}{50.51}\)
\(\Rightarrow\)B có : ( 50 - 2 ) : 1 + 1 = 49 ( số hạng )
\(\Rightarrow B=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}........\frac{2448}{49.50}.\frac{2548}{50.51}.\left(-1\right)\)
\(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.........\frac{48.51}{49.50}.\frac{49.52}{50.51}.\left(-1\right)\)
\(B=\frac{\left(1.2.3...48.49\right).\left(4.5.6......51.52\right)}{\left(2.3.4......49.50\right).\left(3.4.5.....50.51\right)}.\left(-1\right)\)
\(B=\frac{52}{50.3}.\left(-1\right)\)
\(B=\frac{26}{75}.\left(-1\right)\)
Vậy \(B=\frac{-26}{75}\)
\(P=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{1225}\right)\left(1-\dfrac{1}{1275}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}...\dfrac{1224}{1225}.\dfrac{1274}{1275}\)
\(=\dfrac{2.2}{3.2}.\dfrac{5.2}{6.2}.\dfrac{9.2}{10.2}...\dfrac{1224.2}{1225.2}.\dfrac{1274.2}{1275.2}\)
\(=\dfrac{4}{9}.\dfrac{10}{12}.\dfrac{18}{20}...\dfrac{2448}{2450}.\dfrac{2548}{2550}\)
\(=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{48.51}{49.50}.\dfrac{49.52}{50.51}\)
\(=\dfrac{1.2.3...48.49}{2.3.4...49.50}.\dfrac{4.5.6...51.52}{3.4.5...50.51}\)
\(=\dfrac{1}{50}.\dfrac{52}{3}\)
\(=\dfrac{26}{75}\).