Cho A= 2^2 + 4^2 + 6^2 + ... + 98^2. Tính A (Các bạn làm nhanh giúp mình nhé mình cần gấp)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1 + 6 + 6^2 + .... + 6^9 .
= 1 + 6 . ( 1 + 6 + ..... + 6^8 ) .
Do đó A chia cho 6 dư 1
Lời giải:
$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$
Tổng số hạng của $M$: $(100-2):2+1=50$
$M=(100+2).50:2=2550$
Tổng số hạng của $N$: $(99-1):2+1=50$
$N=(99+1).50:2=2500$
$A=M-N=2550-2500=50$
Sửa đề: A=100+98+96+...+2-99-97-...-1
=100-99+98-97+...+2-1
=1+1+...+1
=50
theo mình nghĩ là như th61 này
\(2\cdot2^{99}-2^{99}=2^{99}\)
\(2^{99}=2\cdot2^{98}\)
\(2\cdot2^{98}-2^{98}=2^{98}\)
vậy tức là \(2^n-2^{n-1}=2^{n-1}\)
đến cuối bạn sẽ có \(2^3-2^2=4\)
4-2-1=1
B=\(1+3^2+3^4+...+3^{100}\)
9B=\(3^2+3^4+...+3^{100}\)
9B-B=\(\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
8B=\(3^{102}-1\)
B=\(\left(3^{102}-1\right):8\)
C=\(1+5^3+5^6+...+5^{99}\)
125C=\(5^3+5^6+5^9+...+5^{102}\)
125C-C=\(\left(5^3+5^6+5^9+...+5^{102}\right)-\left(1+5^3+5^6+...+5^{99}\right)\)
124C=\(5^{102}-1\)
C=\(\left(5^{102}-1\right):124\)
hình như mk làm zùi ngày mai nhé
\(A=2^2+4^4+6^2+...98^2\)
\(\frac{1}{4}A=1^2+2^2+3^2+...+49^2\)
\(\frac{1}{4}A=\frac{49.50.\left(2.49+1\right)}{6}\)
\(\frac{1}{4}A=40425\)
\(A=40425.4=161700\)
=>\(2^2+4^2+6^2+...+98^2=161700\)