K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Chúng ta sẽ dùng cách chứng minh phản chứng

Để ABCD là tứ giác nội tiếp thì OA=OB=OC=OD(O là tâm của đường tròn ngoại tiếp tứ giác nội tiếp ABCD vì O là giao điểm của hai đường chéo)

hay \(OA\cdot OC=OB\cdot OD\)(đpcm)

 

28 tháng 2 2021

Nếu $OA\neq OB \neq OC \neq OD$ thì sao ạ? Với hình như "O là giao điểm của hai đường chéo thì là tâm đường tròn" chỉ đúng khi ABCD là hình thang cân.

bài này em ko bt em mới học lp 6 thôi

29 tháng 4 2016

Xét các tam giác đồng dạng là dc

a) Xét (O) có

ΔADB nội tiếp đường tròn(A,D,B∈(O))

AB là đường kính

Do đó: ΔADB vuông tại D(Định lí)

\(\widehat{ADB}=90^0\)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEH có 

\(\widehat{ADE}\) và \(\widehat{AHE}\) là hai góc đối

\(\widehat{ADE}+\widehat{AHE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEH là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

3: Xét ΔIOD và ΔIBC có

góc ICB=góc IDO

góc OID=góc BIC

=>ΔIOD đồng dạng với ΔIBC

=>IO/IB=ID/IC

=>IO*IC=IB*ID

30 tháng 5 2023

IO*IC=IB*IF

5 tháng 2 2022

a.Ta có : $AD$ là đường kính của (O)
$\to AB\perp BD, AC\perp CD$ 

Mà $IH\perp AD\to \widehat{IBA}+\widehat{IHA}=90^o+90^o=180^o$

$\to \Diamond ABIH$ nội tiếp

Tương tự $\to \Diamond CDHI$ nội tiếp

b.Từ câu a $\to \widehat{ACH}=\widehat{ICH}=\widehat{IDH}=\widehat{BDA}=\widehat{BCA}$
$\to CA$ là tia phân giác $\widehat{BCH}$

Tương tự $BD$ là phân giác $\widehat{CBH}\to I$ là tâm đường tròn nội tiếp tam giác BCH

c.Vì $IC\perp CD, IH\perp HD\to I,H,D,C$ nội tiếp đường tròn đường kính ID

$\to M$ là tâm đường tròn

$\to \widehat{BMC}=\widehat{IMC}=2\widehat{CHI}=2\widehat{BHC}=\widehat{BHC}$

Vì I là tâm đường tròn nội tiếp $\Delta BCH$

$\to BCMH$ nội tiếp