Tính: A = 4/5.7 + 4/7.9 + 4/9.11 + ... + 4/21.23 + 4/23.25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2B=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{23}-\frac{1}{25}\right)\)
\(2B=2\left(\frac{1}{3}-\frac{1}{25}\right)\)
\(2B=2\times\frac{22}{75}\)
\(B=\frac{44}{75}\)
\(=4\left(\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}\right)\)
\(=4\left(\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=4\left(\frac{1}{5}-\frac{1}{55}\right)\)
\(=4.\frac{2}{11}\)
\(=\frac{8}{11}\)
\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2013.2015}=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=2.\left(\frac{2015}{2015}-\frac{1}{2015}\right)\)
\(=2.\frac{2014}{2015}\)
\(=\frac{4028}{2015}\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
Ta có :
\(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{53.55}\)
\(=\frac{4}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{53.55}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{55}\right)=2.\left(\frac{11}{55}-\frac{1}{55}\right)=2.\frac{10}{55}=2.\frac{2}{11}=\frac{4}{11}\)
Có gì không hiểu bạn hỏi lại mình nhé! Chúc bạn học tốt!
Ta có: \(\frac{4}{5.7}+\frac{4}{7.9}+.....+\frac{4}{53.55}\)
Đặt C = \(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{53.55}\)
\(\frac{1}{2}C=\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{9}\right)+....+\left(\frac{1}{53}-\frac{1}{55}\right)\)
\(\frac{1}{2}C=\frac{1}{5}-\frac{1}{55}\)
\(\frac{1}{2}C=\frac{2}{11}\)
\(C=\frac{2}{11}:\frac{1}{2}\)
Vậy C = \(\frac{4}{11}\)
Có gì sai thì mong bạn thông cảm
Ta có :
\(A=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+............+\frac{2}{53.55}\right)\)
\(\Rightarrow A=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+..............+\frac{1}{53}-\frac{1}{55}\right)\)
\(\Rightarrow A=2.\left(\frac{1}{5}-\frac{1}{55}\right)=2.\frac{2}{11}=\frac{4}{11}\)
k nha bạn !!!
4/3.5+4/5.7+4/7.9+4/9.11
=4.(1/3.5+1/5.7+1/7.9+1/9.11)
=4.1/2.(2/3.5+2/5.7+2/7.9+2/9.11)
=2.(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)
=2.(1/3-1/11)
=2.8/33
=16/33
4/3.5+4/5.7+4/7.9+4/9.11
=4.2/2.3.5+4.2/2.5.7+4.2/2.7.9+4.2/2.9.11
=4/2.2/3.5+4/2.2/5.7+4/2.2/7.9+4/2.2/9.11
=4/2.(2/3.5+2/5.7+2/7.9+2/9.11)
=4/2.(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11)
=2.(1/3-1/11)
=2.8/33
=16/33
a)\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\cdot\frac{402}{2015}\)
\(=\frac{603}{2015}\)
b)\(=\frac{4}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{98}\right)\)
\(=\frac{4}{5}\left(\frac{1}{3}-\frac{1}{98}\right)\)
\(=\frac{4}{5}\cdot\frac{95}{294}\)
\(=\frac{38}{147}\)
a) Gọi tổng trên là A
A = \(\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{2013.2015}\)
A == \(\frac{3}{5}-\frac{3}{7}+\frac{3}{7}-\frac{3}{9}+\frac{3}{9}-\frac{3}{11}+...+\frac{3}{2013}-\frac{3}{2015}\)
Vì một số trừ cho a rồi cộng cho a sẽ bằng chính số đó nên:
A = \(\frac{3}{5}-\frac{3}{2015}\)
A = \(\frac{1209}{2015}-\frac{3}{2015}\)
A = \(\frac{1206}{2015}\)
b) Gọi tổng trên là B
B = \(\frac{4}{3.8}+\frac{4}{8.13}+\frac{4}{13.15}+...+\frac{4}{93.98}\)
B = \(\frac{4}{3}-\frac{4}{8}+\frac{4}{8}-\frac{4}{13}+\frac{4}{13}-\frac{4}{15}+...+\frac{4}{93}-\frac{4}{98}\)
Vì một số trừ cho a rồi cộng cho a sẽ bằng chính số đó nên:
B = \(\frac{4}{3}-\frac{4}{98}\)
B = \(\frac{686}{294}-\frac{12}{294}\)
B = \(\frac{674}{294}=\frac{337}{147}\)
`A=4/[5.7]+4/[7.9]+4/[9.11]+...+4/[21.23]+4/[23.25]`
`A=2.(2/[5.7]+2/[7.9]+....+2/[23.25])`
`A=2.(1/5-1/7+1/7-1/9+....+1/23-1/25)`
`A=2.(1/5-1/25)`
`A=2. 4/25`
`A=8/25`