Rút gọn: B = \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{20}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^4+...+\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\)
\(=\left(\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2\right)+\left(\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{4}\right)^4\right)+...+\left(\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\right)\)
\(=\dfrac{1}{3}.\dfrac{2}{3}+\left(\dfrac{1}{3}\right)^3.\dfrac{2}{3}+...+\left(\dfrac{1}{3}\right)^{19}.\dfrac{2}{3}\)
\(=\dfrac{2}{3}.\left[\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{19}\right]\)
Lời giải:
\(A=\frac{6!}{(m-2)(m-3)}\left[\frac{m!}{(m-4)!.5!}-\frac{m!}{(m-4)!3.4!}\right]\)
\(=\frac{6!}{(m-2)(m-3)}.\frac{m!}{(m-4)!}(\frac{1}{5!}-\frac{1}{3.4!})=\frac{-4}{(m-2)(m-3)}.\frac{m!}{(m-4)!}\)
\(=\frac{-4}{(m-2)(m-3)}.(m-3)(m-2)(m-1)m=-4m(m-1)\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)..................\left(1-\dfrac{1}{20}\right)\)
\(\Leftrightarrow B=\dfrac{1}{2}.\dfrac{2}{3}.........................\dfrac{19}{20}\)
\(\Leftrightarrow B=\dfrac{1}{20}\)
Ta có : B = \(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right).....\left(1-\dfrac{1}{20}\right)\)
= \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{19}{20}=\dfrac{1.2.3.....19}{2.3.4.....20}=\dfrac{1}{20}\)
\(B=\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)
\(=\left(\dfrac{a-b}{a\left(a+b\right)}-\dfrac{a}{b\left(a+b\right)}\right):\left(\dfrac{b^3}{a\left(a-b\right)\left(a+b\right)}+\dfrac{1}{a+b}\right)\)
\(=\dfrac{b\left(a-b\right)-a^2}{ab\left(a+b\right)}:\dfrac{b^3+a\left(a-b\right)}{a\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{ab-b^2-a^2}{ab\left(a+b\right)}\cdot\dfrac{a\left(a-b\right)\left(a+b\right)}{a^2-ab+b^3}\)
\(=\dfrac{\left(a-b\right)\left(ab-b^2-a^2\right)}{b\left(a^2-ab+b^3\right)}\)
\(=\dfrac{-\left(a-b\right)\left(a^2-ab+b^2\right)}{b\left(a^2-ab+b^3\right)}\)
Đề lỗi rồi chứ mình ko rút gọn đc nữa
\(N=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)
\(\Rightarrow2N=2+1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow N=2N-N=2+1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-1-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}=2-\left(\dfrac{1}{2}\right)^{100}\)
\(N=1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\)
\(\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\)
\(\dfrac{1}{2}N-N=\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\right)\)
\(-\left(1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\right)\)
\(-\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}-1\)
\(N=\dfrac{-\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}}{-\dfrac{1}{2}}\)
B = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{19}{20}\)
= \(\dfrac{1}{20}\)