K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2023

Đặt cạnh hình vuông là a, ta có \(BD=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(\Rightarrow BO=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\Rightarrow BO.BD=a^2\)

Xét 2 tam giác vuông AED và MAB có:

\(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{MBA}=90^0\\\widehat{AED}=\widehat{MAB}\left(slt\right)\end{matrix}\right.\) \(\Rightarrow\Delta AED\sim\Delta MAB\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{BM}=\dfrac{ED}{AB}\Rightarrow BM.ED=AD.AB=a^2\)

\(\Rightarrow BM.ED=BO.BD\)

Mà \(ED=BF\) (do \(BC=CD\) và \(CE=CF\))

\(\Rightarrow BM.BF=BO.BD\Rightarrow\dfrac{BM}{BD}=\dfrac{BO}{BF}\)

Xét hai tam giác BOM và BFD có:

\(\left\{{}\begin{matrix}\dfrac{BM}{BD}=\dfrac{BO}{BF}\\\widehat{OBM}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOM\sim\Delta BFD\left(c.g.c\right)\)

NV
20 tháng 4 2023

loading...

19 tháng 7 2020

a, ∆ADM = ∆CDN (c-g-c)

=> ^ADM = ^CDN (cgtứ) => ^MDN = ^ADC = 90độ ; DM = DN (cctứ)

=> ∆MDN vuông cân tại D (đcpm)

b, Xét ∆ DFN và ∆BDN có:

   ^DNF = ^BND

   ^DBN = ^FDN (=45độ)

=> ∆DFN ~ ∆BDN (g-g) => \(\frac{ND}{NB}=\frac{NF}{ND}\Rightarrow ND^2=NB\cdot NF\left(đpcm\right)\) 

c, PBMF = MB + BF + MF = (AB - AM) + (BC - FC) + (FC + CN) = AB - AM + AB - FC + FC - AM (vì  AM=CN; AB=BC)

            = 2AB

Mà hình vuông ABCD cố định => độ dài AB không đổi => Chu vi ∆BMF không đổi

Vậy chu vi ∆BMF không đổi khi M di động trên cạnh AB.

a: Xét ΔAFD vuông tại D và ΔAEB vuông tại B có

AD=AB

góc FAD=góc EAB

Do đó: ΔAFD=ΔAEB

b: ΔAFD=ΔAEB

=>AF=AE

=>ΔAFE cân tại A

mà AI là trung tuyến

nên AI vuông góc với EF

Xét ΔINE vuông tại I và ΔIMF vuông tại I có

IE=IF
góc IEN=góc IFM

Do đó: ΔINE=ΔIMF

=>IN=IM

Xét tứ giác MFNE có

I là trung điểm chung của MN và FE

MN vuông góc với FE

Do đó: MFNE là hình thoi

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0
6 tháng 12 2018

hình như trên

+)Ta có: ΔDMB=ΔENC ( g-c-g) ( Vì MBD^=NCE^ cùng bằng ACB^)

Nên MD = NE.

+)Xét ΔDMI và ΔENID^=E^=900,MD=NE(cmt)

MID^=NIE^( Hai góc đối đỉnh)

Nên ΔDMI=ΔENI( cgv - gn)

⇒MI=NI
+)Từ B và C kẻ các đường thẳng lần lượt vuông

Góc với AB và AC cắt nhau tại J.

Ta có: ΔABJ=ΔACJ(g−c−g)⇒JB=JC

Nên J thuộc AL đường trung trực ứng với BC

Mặt khác : Từ ΔDMB=ΔENC( Câu a)
Ta có : BM = CN
            BJ = CJ ( cm trên)

MBJ^=NCJ^=900

Nên ΔBMJ=ΔCNJ ( c-g-c)

 ⇒MJ=NJ hay đường trung trực của MN

Luôn đi qua điểm J cố định.

6 tháng 12 2018

hình nè