K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Đáp án n = 1 nha bn!!!

7 tháng 7 2021

A = \((2n)^{3} - 3n + 1 \)

\(\Leftrightarrow\) A = \((2n)^{3} - 2n - n + 1\)

\(\Leftrightarrow\) A = \(2n (n^{2} - 1) - ( n-1)\)

\(\Leftrightarrow\) A = \(2n(n - 1)(n+1)-(n-1)\)

\(\Leftrightarrow\) A = \((2n^{2} +2n-1)(n-1)\)

Vì A là số nguyên tố nên n - 1 = 1

\(\Rightarrow\) n = 2

 

giúp e vs .e đang cần gấp

1 tháng 9 2020

Ta có : \(n^2+2n+2=\left(n+1\right)^2+1\ge1\forall n\)

Nên \(\left(n^2+2n+2\right)\left(n^2-2n+2\right)\) là số nguyên tố thì :

\(\orbr{\begin{cases}n^2+2n+2=1\\n^2-2n+2=1\end{cases}}\)

+) Với \(n^2+2n+2=1\) \(\Leftrightarrow\left(n+1\right)^2=0\)

\(\Leftrightarrow n=-1\) ( Loại do n tự nhiên )

+) với \(n^2-2n+2=1\) \(\Leftrightarrow\left(n-1\right)^2=0\)

\(\Leftrightarrow n=1\) ( Thỏa mãn )

Thử lại với \(n=1\) thì \(\left(n^2+2n+2\right)\left(n^2-2n+2\right)=\left(1+2+2\right)\left(1-2+2\right)=5\) là số nguyên tố.

Vậy \(n=1\) thỏa mãn đề.

DD
15 tháng 9 2021

\(S=1+2+...+n=\frac{n\left(n+1\right)}{2}\)là số nguyên tố suy ra 

\(\orbr{\begin{cases}\frac{n}{2}=1\\\frac{n+1}{2}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}\)

Thử lại \(n=2\)thỏa mãn. 

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP