Từ điểm A nằm ngoài (O;R),vẽ 2 tiếp tuyến AB,AC với đường tròn.Gọi H là giao điểm của OA và BC
a) Chứng minh Ao vuông góc với BC và 4 điểm A,B,O,C cùng thuộc 1 đường tròn
b) Kẻ đường kính BD.Gọi E là giao điểm của AD với (O),Chứng minh AC^2=AH.AO và AE.AD=AH.AO
c) Chứng minh EC là tiếp tuyến của (H;HE)
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
Xét tứ giác OBAC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
Do đó: ΔABE đồng dạng với ΔADB
=>AB/AD=AE/AB
=>AB^2=AD*AE=AH*AO