cho tam giác ABC có góc ABC = 55o, trên cạnh AC lấy điểm D (D ko trùng với A và C)
trên cạnh AB lấy điểm E ( E ko trùng với A và B). CMR2 đoạn thẳng BD và CE cắt nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/. AC = AD + DC = 4 + 3 = 7
b/. Vì tia BD nằm giữa 2 tia BA và BC => ABD + DBC = ABC (góc)
=> 30 + DBC = 55
=> DBC = 25
c/. Vì tia BA nằm giữa 2 tia Bx và BD
=> DBA + ABx = xBD
30 + ABx = 90
=> ABx = 90 - 30 = 60
d/. Vì E thuộc AB và D thuộc AC ,mà AB và AC cắt nhau tại A nên CE và BD cắt nhau là hiển nhiên
cho mình hỏi ,làm sao bạn có thể tìm đc tia BA nằm giữa 2 tia Bx và BD
1) -Ta có: \(\widehat{MBD}=\widehat{ACB}\) (△ABC cân tại A) và \(\widehat{ACB}=\widehat{NCE}\) (đối đỉnh).
\(\Rightarrow\widehat{MBD}=\widehat{NCE}\)
-Xét △MDB và △NEC có:
\(\widehat{MBD}=\widehat{NCE}\) (cmt)
\(BD=CE\)
\(\widehat{MDB}=\widehat{NEC}=90^0\)
\(\Rightarrow\)△MDB=△NEC (g-c-g).
\(\Rightarrow DM=EN\) (2 cạnh tương ứng).
2) -Ta có: DM⊥BC tại D, EN⊥BC tại E nên DM//EN
-Xét △EMN và △DNM có:
\(DM=EN\) (cmt).
\(\widehat{DMN}=\widehat{ENM}\) (DM//EN và so le trong).
MN là cạnh chung.
\(\Rightarrow\)△EMN=△DNM (c-g-c).
\(\Rightarrow\widehat{EMN}=\widehat{DNM}\) (2 góc tương ứng) nên ME//DN.
3) -Có điểm I rồi kẻ thêm điểm I nữa hả bạn?
3) -Mình nói tóm tắt:
-Bạn chứng minh AK⊥BC tại K rồi từ đó chứng minh △OKB=△OKC (c-g-c) suy ra OB=OC.
-Bạn chứng minh △IDM=△INE (g-c-g) từ đó suy ra DI=IN và góc OKB, góc OKC là 2 góc vuông.
-Bạn chứng minh △OIM=△OIN(c-g-c) suy ra OM=ON
-Bạn chứng minh △OBM=△OCN (c-c-c) suy ra góc OBM= góc OCN.
-Bạn chứng minh △OAB=△OAC (c-c-c) suy ra góc OBM=góc OCA.
Suy ra góc OCN=góc OCA mà 2 góc này là 2 góc kề bù nên cùng bằng 900.
-\(S_{AOC}=\dfrac{1}{2}AC.OC\)
\(S_{AOC}=S_{AKC}+S_{OKC}=\dfrac{1}{2}AK.KC+\dfrac{1}{2}OK.KC=\dfrac{1}{2}KC\left(AK+OK\right)=\dfrac{1}{2}KC.OA\)
\(\Rightarrow AC.OC=CK.OA\)
\(\Rightarrow\dfrac{AC^2}{CK^2}=\dfrac{OA^2}{OC^2}=\dfrac{OA^2-AC^2}{OC^2-CK^2}=\dfrac{OC^2}{OK^2}\)
\(\Rightarrow\dfrac{AC}{CK}=\dfrac{OC}{OK}\)
\(\Rightarrow\dfrac{AC}{OC}=\dfrac{CK}{OK}\)
\(\Rightarrow\dfrac{CK.OC}{OK}=AC\)
\(\Rightarrow\dfrac{OK}{CK.OC}=\dfrac{1}{AC}\)
\(\Rightarrow\dfrac{OK^2}{CK^2.OC^2}=\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{OC^2-CK^2}{OC^2.CK^2}=\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{1}{CK^2}-\dfrac{1}{OC^2}=\dfrac{1}{AC^2}\)
Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Đúc Phương Nam - Toán lớp 5 - Học toán với OnlineMath