Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ap dụng định lý Pytago vào tam giác vuông \(ABC\)ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)
\(\Leftrightarrow\)\(BC=\sqrt{25}=5\)
a: BC=10cm
b: Xét ΔCAB vuông tại A và ΔMAN vuông tại A có
AB=AN
AC=AM
Do đó: ΔCAB=ΔMAN
Suy ra: CB=MN
a: Xét tứ giác ACBN có
M là trung điểm chung của AB và CN
nên ACBN là hình bình hành
=>NB//AC và NB=AC
b: Xét tứ giác ABFC có
FB//AC
FB=AC
=>ABFC là hình bình hành
=>AF cắt BC tại trung điểm của mỗi đường
=>A,E,F thẳng hàng
a: Xét tứ giác ABCQ có
N là trung điểm của AC
N là trung điểm của BQ
Do đó: ABCQ là hình bình hành
Suy ra: AQ//BC và AQ=BC
Xét tứ giác ACBP có
M là trung điểm của AB
M là trung điểm của CP
Do đó: ACBP là hình bình hành
Suy ra: AP//BC và AP=BC
Ta có: AQ//BC
AP//BC
mà AQ,AP có điểm chung là A
nên Q,A,P thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN=PQ/4
=>PQ=4MN
tham khảo
mik ko thể vẽ hình đc
SORRY
Giải thích các bước giải:
a.*Xét ΔMBN,ΔMAC có:
MA=MB( vì M là trung điểm BA)
ˆNMB=ˆMC (2 góc đối đỉnh)
MN=MC
⇔ΔMNB=ΔMCA(c.g.c)
⇒ˆMNB=ˆMCA
⇒BN//AC
Vậy BN//AC
b.Từ câu a ⇒AC=BN
Ta có
BN//AC
⇒AC//BE
⇒ˆEAC=ˆAEB
*Xét ΔABE,ΔECA có:
AE chung
ˆAEB=ˆEAC
BE=AC
⇔ ΔABE=ΔECA(c.g.c)
⇒AB=EC
Vậy AB=EC
c.Ta có
AC//BE
⇒ˆACB=ˆCBE
⇒ˆACF=ˆFBE
*Xét ΔACF và ΔBEF có:
FB=FC( F là trung điểm của BC)
ˆACF=ˆEBF
AC=BE
⇔ΔACF=ΔEBF(c.g.c)
⇒ˆAFC=ˆBFE
⇒A,F,E thẳng hàng
Vậy A;F;E thẳng hàng
Ta có hình vẽ:
a) Vì M là trung điểm của AB nên AM = BM = \(\frac{AB}{2}\)
Xét Δ AMK và Δ BMC có:
AM = BM (cmt)
AMK = BMC (đối đỉnh)
MK = MC (gt)
Do đó, Δ AMK = Δ BMC (c.g.c) (đpcm)
b) Vì N là trung điểm của AC nên AN = NC
Xét Δ ANI và Δ CNB có:
AN = NC (cmt)
ANI = CNB (đối đỉnh)
NI = NB (gt)
Do đó, Δ ANI = Δ CNB (c.g.c)
=> AI = BC (2 cạnh tương ứng) (đpcm)
c) Vì Δ AMK = Δ BMC (câu a) => AKM = MCB (2 góc tương ứng)
Mà AKM và MCB là 2 góc so le trong nên AK // BC (1)
Vì Δ ANI = Δ CNB (câu b) => IAN = NBC (2 góc tương ứng)
Mà IAN và NBC là 2 góc so le trong nên AI // BC (2)
Từ (1) và (2) => AK và AI trùng nhau hay 3 điểm I, A, K thẳng hàng (3)
Có: Δ AMK = Δ BMC (câu a) => AK = BC (2 cạnh tương ứng)
Mà AI = BC (câu b) => AK = AI (4)
Từ (3) và (4) => A là trung điểm của IK (đpcm)
a) Xét \(\Delta BNM\)và \(\Delta ACM\)có :
NM = MC ( gt )
\(\widehat{NMB}=\widehat{CMA}\)( hai góc đối đỉnh )
MB = MA ( gt )
Suy ra : \(\Delta BNM\)= \(\Delta ACM\)( c.g.c )
\(\Rightarrow NB=AC\)( hai cạnh tương ứng )
\(\Rightarrow\widehat{BNM}=\widehat{ACM}\)( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong nên NB // AC
b) Xét \(\Delta BNC\)có \(\widehat{EBC}\)là góc ngoài nên \(\widehat{EBC}\)= \(\widehat{BNC}+\widehat{BCN}\)hay \(\widehat{EBC}\)= \(\widehat{ACM}+\widehat{BCN}=\widehat{ACB}\)
Xét \(\Delta BEC\)và \(\Delta BAC\)có :
BE = AC ( vì NB = BE = AC )
\(\widehat{EBC}\)= \(\widehat{ACB}\)( cmt )
BC ( cạnh chung )
Suy ra : \(\Delta BEC\)= \(\Delta BAC\)( c.g.c )
\(\Rightarrow AB=EC\)( hai cạnh tương ứng )
c) Vì \(\widehat{EFC}=\widehat{AFB}\)( hai góc đối đỉnh )
Mà \(\widehat{AFB}=180^o-\widehat{AFC}\)
\(\Rightarrow\widehat{EFC}+\widehat{AFC}=180^o-\widehat{AFC}+\widehat{AFC}=180^o\)
\(\Rightarrow\widehat{AFE}\)là góc bẹt nên A,F,E thẳng hàng
a) Xét \(\Delta BACvà\Delta NAMcó\)
\(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )
\(BA=NA\) ( gt )
\(CA=MA\) ( gt )
\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )
\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )
mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a
bn chép bài mik