Cho a,b,c>2 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\).Chứng minh rằng:(a-2)(b-2)(c-2)≤1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\sqrt{b^2+a^2+a^2}}{ab}\ge\dfrac{\sqrt{\dfrac{1}{3}\left(b+a+a\right)^2}}{ab}=\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)\)
Tương tự: \(\dfrac{\sqrt{c^2+2b^2}}{bc}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)\) ; \(\dfrac{\sqrt{a^2+2c^2}}{ac}\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)\)
Cộng vế với vế:
\(VT\ge\dfrac{1}{\sqrt{3}}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\sqrt{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1980\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{3}{1980}\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
\(\Rightarrow\dfrac{1}{a}=\left(\dfrac{1}{2}-\dfrac{1}{b}\right)+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{b-2}{2b}+\dfrac{c-2}{2c}\)
Dễ dàng chứng minh \(\dfrac{b-2}{2b},\dfrac{c-2}{2c}\) là các số dương.
Áp dụng BĐT Cauchy cho 2 số dương ta có:
\(\dfrac{b-2}{2b}+\dfrac{c-2}{2c}\ge2\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{4bc}}=\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{bc}}\)
\(\Rightarrow\dfrac{1}{a}\ge\sqrt{\dfrac{\left(b-2\right)\left(c-2\right)}{bc}}\left(1\right)\)
CMTT ta có: \(\left\{{}\begin{matrix}\dfrac{1}{b}\ge\sqrt{\dfrac{\left(c-2\right)\left(a-2\right)}{ca}}\left(2\right)\\\dfrac{1}{c}\ge\sqrt{\dfrac{\left(a-2\right)\left(b-2\right)}{ab}}\left(3\right)\end{matrix}\right.\)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{1}{abc}\ge\dfrac{\left(a-2\right)\left(b-2\right)\left(c-2\right)}{abc}\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le1\left(đpcm\right)\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b=c\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\end{matrix}\right.\Leftrightarrow a=b=c=3\)
Đồng thời chỉ ra phương pháp nhé!!