Cho ΔABC có ba góc nhọn (AB<AC) và ba đường cao BD, CE, AF cắt nhau tại G. Gọi H là giao điểm của DE với BC.CM: HC.BF = HB.CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: Xet ΔHEB vuôg tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
c: ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a) Xét ΔAEB và ΔAFC ta có:
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{AFC}=90^0\)
\(\Rightarrow\Delta AEB\)∼\(\Delta AFC\left(g.g\right)\)
\(b.Xét\) \(\Delta HFB\) \(và\) \(\Delta HEC\) \(ta\) \(có:\)
\(\widehat{BFH}=\widehat{HEC}=90^0\\ \widehat{FHB}=\widehat{EHC}\left(đ.đ\right)\)
\(\rightarrow\Delta HFB\)∼\(\Delta HEC\left(g.g\right)\)
\(\rightarrow\dfrac{HE}{HF}=\dfrac{HC}{HB}\\ \Rightarrow HE.HB=HF.HC\)
\(c.Xét\) \(\Delta AMD\) \(ta\) \(có:\)
\(AD//HF\left(DM\perp AB,FH\perp AB\right)\\ \rightarrow\dfrac{AF}{AH}=\dfrac{AH}{AD}\left(1\right)\)
\(Xét\) \(\Delta AND\) \(ta\) \(có:\)
\(HE//DM\left(HE\perp AC,DM\perp AC\right)\\ \rightarrow\dfrac{FA}{AM}=\dfrac{AH}{AD}\left(2\right)\)
\(Từ\left(1\right)và\left(2\right)\Rightarrow\dfrac{FA}{AM}=\dfrac{AE}{AN}\\ \Rightarrow EF//MN\)
- Xét △AMD và △AHB có: \(\widehat{AMD}=\widehat{AHB}\left(=90^0\right)\), \(\widehat{BAH}\) là góc chung.
\(\Rightarrow\Delta AMD\sim\Delta AHB\left(g-g\right)\)
\(\Rightarrow\dfrac{AM}{AH}=\dfrac{AD}{AB}\Rightarrow AM.AB=AD.AH\left(1\right)\)
- Xét △AND và △AHC có: \(\widehat{AND}=\widehat{AHC}=90^0\), \(\widehat{CAH}\) là góc chung.
\(\Rightarrow\Delta AND\sim\Delta AHC\left(g-g\right)\)
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AN}{AH}\Rightarrow AD.AH=AN.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AM.AB=AN.AC\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét △AMN và △ACB có: \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt), \(\widehat{BAC}\) là góc chung.
\(\Rightarrow\Delta AMN\sim\Delta ACB\left(c-g-c\right)\)
\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)
Ta có \(OA=OB\) nên △OAB cân tại O.
\(\Rightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)
Xét (O): \(\widehat{AOB}=2\widehat{ACB}\left(=sđ\stackrel\frown{AB}\right)\)
\(\Rightarrow\widehat{OAB}=\dfrac{180^0-2\widehat{ACB}}{2}=90^0-\widehat{ACB}\)
\(\Rightarrow\widehat{OAB}+\widehat{AMN}=90^0\) nên MN vuông góc với OA.
=>MN song song với tiếp tuyến tại A của (O) (vì OA là bán kính của (O) ).
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
=>ΔABE đồng dạng với ΔACF
b: Xét ΔHDB vuông tại D và ΔHEA vuông tại E co
góc DHB=góc EHA
=>ΔHDB đồng dạng với ΔHEA
=>HD/HE=HB/HA
=>HD*HA=HE*HB
c: góc AFH+góc AEH=90+90=180 độ
=>AFHE nội tiếp
=>góc BEF=góc BAD