K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 1 2023

a) \(O\) là giao điểm của hai đường chéo của hình vuông \(ABCD\).

\(OC=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{2}AB=\dfrac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SC^2-OC^2}=\sqrt{\left(a\sqrt{2}\right)^2-\left(\dfrac{a\sqrt{2}}{2}\right)^2}=\dfrac{a\sqrt{6}}{2}\).

\(V_{S.ABCD}=\dfrac{1}{3}.SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{6}}{2}.a^2=\dfrac{a^3\sqrt{6}}{6}\)

b) Gọi \(I\) là tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\).

Khi đó \(IA=IS\)

\(\Leftrightarrow\sqrt{OA^2+OI^2}=SO-OI\)

\(\Leftrightarrow\sqrt{\dfrac{a^2}{2}+OI^2}=\dfrac{a\sqrt{6}}{2}-OI\)

\(\Leftrightarrow\dfrac{a^2}{2}+OI^2=\left(\dfrac{a\sqrt{6}}{2}-OI\right)^2\)

\(\Leftrightarrow OI=\dfrac{a\sqrt{6}}{6}\).

Suy ra bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\) là

 \(SI=SO-OI=\dfrac{a\sqrt{6}}{2}-\dfrac{a\sqrt{6}}{6}=\dfrac{a\sqrt{6}}{3}\).

c) \(A'C'//AC\) suy ra \(A'C'\) vuông góc với mặt phẳng \(\left(SBD\right)\).

Mà \(A'C'\) cắt \(\left(SBD\right)\) tại trung điểm của nó nên \(C'\) đối xứng với \(A'\) qua mặt phẳng \(\left(SBD\right)\)

Tương tự \(A\) đối xứng với \(C\) qua mặt phẳng \(\left(SBD\right)\).

Suy ra phép đối xứng qua mặt phẳng \(\left(SBD\right)\) biến hình chóp \(A'.ABCD\) thành hình chóp \(C'.CBAD\) do đó hai hình chóp đó bằng nhau. 

12 tháng 1 2023

lp12

13 tháng 11 2017

Đáp án C

3 tháng 12 2017

22 tháng 3 2018

Đáp án C

3 tháng 6 2019

1 tháng 1 2018

Đáp án: D

 Hướng dẫn giải:

Gọi O là giao điểm của AC và BD, M là trung điểm của SA.

Qua M kẻ đường thẳng vuông góc với SA cắt SO tại I

⇒ I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD

⇒ S I = R = 2

Ta có:

 

⇒ S O = S M . S A S I = S A 2 2 2

⇒ S A = S O 2

⇒ A B = 2 ⇒ S A B C D = A B 2 = 4

⇒ V S . A B C D = 1 3 . S O . S A B C D = 4 2 3