Cho hàm số: `y=x^2` và `y=-x+2`
`a,` Tìm tọa độ giao điểm của đồ thị `2` hàm số trên và tọa độ tung điểm `I` của đoạn thẳng `AB` biết điểm `A` có hoành độ dương
`b,` Tìm tọa độ điểm `M in (P): y =x^2` sao cho `ΔAMB` cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2+x-2=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\y=x^2\end{matrix}\right.\)
=>A(1;1); B(-2;4)
Tọa độ trung điểm I là:
\(\left\{{}\begin{matrix}x_I=\dfrac{1+\left(-2\right)}{2}=\dfrac{-1}{2}\\y_I=\dfrac{1+4}{2}=\dfrac{5}{2}\end{matrix}\right.\)
\(a)\)Vì đths \(y=\left(2m-\frac{1}{2}\right)x\)đi qua \(A\left(-2;5\right)\)
\(\Rightarrow\)Thay \(x=-2;y=5\)vào hàm số
\(\Leftrightarrow\left(2m-\frac{1}{2}\right)\left(-2\right)=5\)
\(\Leftrightarrow2m-\frac{1}{2}=-\frac{5}{2}\)
\(\Leftrightarrow2m=-2\)
\(\Leftrightarrow m=-1\)
\(b)m=-1\)
\(\Leftrightarrow y=-\frac{5}{2}x\)
\(c)\)Lập bảng giá trị:
\(x\) | \(0\) | \(-2\) |
\(y=-\frac{5}{2}x\) | \(0\) | \(5\) |
\(\Rightarrow\)Đths \(y=-\frac{5}{2}x\)là một đường thẳng đi qua hai điểm \(O\left(0;0\right);\left(-2;5\right)\)
Tự vẽ :<
\(d)\)Chỉ cần thành hoành độ hoặc tung độ là x hoặc y vào đths trên là tìm được cái còn lại. Khi đó tìm được tọa độ của 2 diểm trên.
\(a,\Leftrightarrow y=0;x=2\Leftrightarrow2m-2+m-2=0\Leftrightarrow m=\dfrac{4}{3}\)
\(b,\) PT giao Ox: \(\Leftrightarrow\left(m-1\right)x=2-m\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{2-m}{m-1}\right|\)
PT giao Oy: \(y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\)
\(S_{OAB}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{2}{3}\Leftrightarrow\left|\dfrac{2-m}{m-1}\cdot\left(m-2\right)\right|=\dfrac{4}{3}\\ \Leftrightarrow\left|\dfrac{-\left(m-2\right)^2}{m-1}\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m-2\right)^2}{m-1}=\dfrac{4}{3}\left(1\right)\\\dfrac{-\left(m-2\right)^2}{1-m}=\dfrac{4}{3}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-3m^2+12m-12=4m-4\\ \Leftrightarrow3m^2-9m+9=0\\ \Leftrightarrow m\in\varnothing\\ \left(2\right)\Leftrightarrow-3m^2+12m-12=4-4m\\ \Leftrightarrow3m^2-16m+16=0\\ \Leftrightarrow\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=4\\m=\dfrac{4}{3}\end{matrix}\right.\) thỏa đề
\(c,\) Gọi \(E\left(x_0;y_0\right)\) là điểm cần tìm
\(\Leftrightarrow\left(m-1\right)x_0+m-2=y_0\\ \Leftrightarrow mx_0+m-x_0-y_0-2=0\\ \Leftrightarrow m\left(x_o+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2-x_0=-1\end{matrix}\right.\Leftrightarrow E\left(-1;-1\right)\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\\ =1-\dfrac{1}{46}\\ =\dfrac{45}{46}\\ \Rightarrow S< 1\)
Gọi ` ƯCLN(n+1 ; 2n+3)=d`
Ta có:
`n+1 vdots d => 2n+2 vdots d`
`2n+3 vdots d`
`=>(2n+3)-(2n+2) vdots d`
`=>2n+3-2n-2 vdots d`
`=>1 vdots d`
`=>ƯCLN(n+1; 2n+3)=1`
`=> (n+1)/(2n+3)` tối giản