K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2020

\(\left(6x+7\right)^2.\left(3x+4\right).\left(x+1\right)=6\)

<=> \(\left(36x^2+84x+49\right)\left(3x^2+7x+4\right)=6\)

Đặt: \(3x^2+7x+4=t\)

=> \(36x^2+84x+49=12\left(3x^2+7x+4\right)+1=12t+1\)

Ta có phương trình ẩn t: 

\(t\left(12t+1\right)=6\)

<=> \(12t^2+t-6=0\)

<=> \(12t^2-8t+9t-6=0\)

<=> \(4t\left(3t-2\right)+3\left(3t-2\right)=0\)

<=> \(\left(4t+3\right)\left(3t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=-\frac{3}{4}\\t=\frac{2}{3}\end{cases}}\)

Với \(t=-\frac{3}{4}\) ta có phương trình: \(3x^2+7x+4=-\frac{3}{4}\)

<=> \(x^2+\frac{7}{3}x+\frac{19}{12}=0\)

<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=-\frac{2}{9}\)

<=> \(\left(x+\frac{7}{6}\right)^2=-\frac{2}{9}\)phương trình vô nghiệm

+) Với \(t=\frac{2}{3}\)ta có: \(3x^2+7x+4=\frac{2}{3}\)

<=> \(x^2+\frac{7}{3}x+\frac{10}{9}=0\)

<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=\frac{1}{4}\)

<=> \(\left(x+\frac{7}{6}\right)^2=\frac{1}{4}\)

<=> \(x=-\frac{2}{3}\)

hoặc \(x=-\frac{5}{3}\)

Kết luận:...

Cách khác cô Chi nhé ! , nhưng cách này tới đấy xin cùy.

\(\left(6x+7\right)^2\left(3x+4\right)\left(x+1\right)=6\)

\(108x^4+504x^3+879x^2+679x+196=6\)

\(108x^4+504x^3+879x^2+679x+190=0\)

23 tháng 1 2018

pt nào cho thì mới biết chứ bạn

18 tháng 6 2017

a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)

b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)

Đặt \(k=x^2-x+2\) thì biểu thức có dạng

k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)

c)làm tương tự câu a