Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O;R) tại M, đường thẳng MB cắt đường thẳng CH tại K. Chứng minh IK song song với AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Vì F C H = F D H = 90 o nên tứ giác CHDF nội tiếp đường tròn tâm I đường kính FH
=> IC = ID. Mà OC = OD nên ∆ OCI = ∆ ODI (c.c.c) => COI = DOI
=> OI là phân giác của góc COD
d) Vì OC = CD = OD = R nên ∆ OCD đều => COD = 60o
Có C A D = 1 2 C O D = 30 o = > C F D = 90 o − C A D = 60 o
Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có
CID = 2CFD = 120o => OIC = OID = C I D 2 = 60 o
Xét góc nội tiếp và góc ở tâm cùng chắn cung CD của (I), có
CID = 2CFD = 120o => OIC = OID = C I D 2 = 60 o
Mặt khác COI = DOI = C O D 2 = 30 o = > O I D + D O I = 90 o = > Δ O I D vuông tại D
Suy ra O I = O D sin 60 o = 2 R 3
Vậy I luôn thuộc đường tròn O ; 2 R 3