tìm số tự nhiên khác 1 mà khi chia cho 3, 4, 5, 7 có cùng dư là một
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
Gọi số cần tìm là a.
=> a+1 \(⋮\)2;3;4;5;6;7;8;9
hay a+1 \(\in BC\left(2;3;4;5;6;7;8;9\right)=\left\{2520;5040;7560;...\right\}\)
Mà a nhỏ nhất nên a+1 cũng mang giá trị nhỏ nhất
=> a+1 = 2520
=> a= 2519
Vậy số cần tìm là 2519
Gọi số cần tìm là a. Theo đề bài, a chia cho 3; 4; 5; 7 đều dư 1 nên b = a - 1 chia hết cho 3; 4; 5; 6; 7.
b chia hết cho 4 và 5 nên b có tận cùng là 0.
Xét các trường hợp sau:
- b có 1 chữ số: b = 0 -> a = 1 loại.
- b có 2 chữ số: b có tận cùng bằng 0 và chia hết cho 7 nên b = 70 loại vì 70 không chia hết cho 3.
- b có 3 chữ số: đặt b = xy0.
+ Vì b chia hết cho 4 nên y bằng 0; 2; 4; 6 hoặc 8;
+ Vì xy0 chia hết cho 7 nên b có thể là: 140; 280; 420; 560; 700; 840 hoặc 980.
Trong các số trên chỉ có 420 và 840 chia hết cho 3 và 6. Nên b bằng 420 hoặc 840 => a bằng 421 hoặc 841.
Vậy số bé nhất cần tìm là: 421.
421