tìm số tự nhiên n để n^2+n=56 tìm n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
\(n^2+n=56\Leftrightarrow n^2+n-56=0\)
\(\Leftrightarrow n^2-7n+8n-56=0\)
\(\Leftrightarrow n\left(n-7\right)+8\left(n-7\right)=0\)
\(\Leftrightarrow\left(n+8\right)\left(n-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n+8=0\\n-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}n=-8\\n=7\end{cases}}}\)(Loại n=-8 vì n là số tự nhiên)
Vậy n=7
n2 + n = 56
=> n2 = 56 - n
Mà 72 = 56 - 7
=> n = 7
Vậy: n = 7
a, Ta có : 4n - 7 chia hết cho n - 1 => 4n - 7 là bội của n - 1 hay n - 1 là ước của 4n - 7
=> n - 1 là ước của 8, ( hỏi cách làm ra 8, thì bn phải thực hiện phép tính, nhưng đây là cô mk dạy, khác nhưng kq vẫn giống )
Bn tự tìm ước của 8 rồi tiếp tục làm
b, Ta có : 10n - 2 chia hết cho n - 2 => 10n - 2 là bội của n - 2 hay n - 2 là ước của 10n - 2
=> n - 2 là ước của 4
Tiếp tục tìm nha bn !!!! ^^
4n - 7 chia hết cho n -1
=> 4n - 4 - 3 chia hết cho n - 1
=> -3 chia hết cho n - 1
=> n - 1 thuộc U(3)
Ta có: U(3) = {+-1;+-3}
Liệt kê ra nhé
\(n^2+n=56\)
\(n^2+1n=56\)
\(n\left(n+1\right)=56\)
\(\Rightarrow7.\left(7+1\right)=56\)
\(\Rightarrow n=7\)
Ta có: n2+n = 56 => n.n+n = 56 => n(n+1) = 56 = 7.8 => n=7
n2+n=56 <=> n(n+1)=56
Ta thấy: n và n+1 là 2 số tự nhiên liên tiếp=> Phân tích 56=7.8
=> n(n+1)=7.8
=> n=7
ĐS: n=7