tìm SNT P sao cho p2 +4 và p2 -4 là SNT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p + 1 là số nguyên tố
p+2 và p+4 là số nguyên tố
p2,p+6,p+14 và p+18 đều là snt
tìm số nt để thỏa mãm p
, p+2, p+4 nguyên tố?
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố
*p # 3:
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố
Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3
TK nhé
Vì số nguyên tố chẵn duy nhất là 2
Mà tổng của 4 số nguyên tố liên tiếp là 1 số nguyên tố.Tổng của 4 số này là 1 số lẻ
Suy ra 4 số này ko thể đều là 4 số lẻ .Vậy phải có ít nhất 1 số chẵn.
Mà số nguyên tố nhỏ nhất là 2 . Vậy trong 4 số đó có số 2 là số nhỏ nhất
Suy ra 4 só đó là 2;3;5;7
Xét:
p=2=>p+4=2+4=6-> hợp số
p+8=2+8=10-> hợp số
=>loại
p=3=>p+4=3+4=7-> hợp số
p+8=3+8=11-> hợp số
=> chọn
p>3
=> p=3k+1(k thuộc z)-> p+8=3k+(1+8)=3k+9=3m(m thuộc z)=> hợp số => loại
=>p=3k+2(k thuộc z)->p+4=3k+(2+4)=3k+6=3n(n thuộc z)=> hợp số=> loại
Vậy p=3
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
Ta có: p là số nguyên tố lớn hơn 3
=>p không chia hết cho 3
TH1: p=3m+1 (m thuộc N)
=>p2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>p2 chia 3 dư 1
TH2: p=3n+2 (n thuộc N)
=>p2=(3n+2)2=3n(3n+2)+2(3n+2)=9n2+6n+6n+4=3(3n2+4n+1)+1
=>p2 chia 3 dư 1
Vậy p2 luôn chia 3 dư 1 (với p là SNT >3)
=>p2-1 chia hết cho 3(đpcm)