Tìm y:
y x 95 - y x 55 + y x 60 = 20900
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=55\Rightarrow x=55-y\\ \Leftrightarrow\dfrac{4+55-y}{7+y}=\dfrac{4}{7}\\ \Leftrightarrow28+385-7y=28+4y\\ \Rightarrow y=35\\ \Rightarrow x=55-35=20\)
Ta có: \(x\cdot95+x\cdot60-x\cdot55=21000\)
\(\Leftrightarrow x\cdot100=21000\)
hay x=210
x * ( 95 + 60 - 55 ) = 21000
x * 100 = 21000
x = 21000 : 100
x = 210
Ta có : x + y + xy = 55
=>(x+xy)+y+1=55+1=56
=>x(y+1)+(y+1)=56
=>(x+1)(y+1)=56
=>(x+1);(y+1) thuộc tập hợp ước của 56 = (1;56;2;28;4;14;7;8)
=> Ta có bảng sau :
x+1 | 1 | 56 | 2 | 28 | 4 | 14 | 7 | 8 |
x | 0 | 55 | 1 | 27 | 3 | 13 | 6 | 7 |
y+1 | 56 | 1 | 28 | 2 | 14 | 4 | 8 | 7 |
y | 55 | 0 | 27 | 1 | 13 | 3 | 7 | 6 |
Vậy ta có các cặp số nguyên (x;y) thỏa mãn là :(0;55);(55;0);(1;27);(27;1);(3;13);(13;3);(6;7);(7;6)
có 2x=3y=5z
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x= 15.5=75, y= 10.5=50, z= 6.5= 30
vậy x=75, y = 50, z = 30
2x.(3y-2) + (3y-2) = -55 => (2x+1)(3y-2) = -55.Ta có :
2x+1 | -55 | -11 | -5 | -1 | 1 | 5 | 11 | 55 |
3y-2 | 1 | 5 | 11 | 55 | -55 | -11 | -5 | -1 |
2x | -56 | -12 | -6 | -2 | 0 | 4 | 10 | 54 |
3y | 3 | 7 | 13 | 57 | -53 | -9 | -3 | 1 |
x | -28 | -6 | -3 | -1 | 0 | 2 | 5 | 27 |
y | 1 | 19 | -3 | -1 |
Vậy (x;y) = (-28;1) ;(-1;19) ;(2;-3) ; (5;-1)
Gọi d là ước chung lớn nhất của x, y thì ta có
\(\hept{\begin{cases}x=da\\y=db\end{cases}}\)với a, b nguyên tố cùng nhau
Thế vào bài toán ta được
\(d^3a^3-d^3b^3=95\left(d^2a^2+d^2b^2\right)\)
\(\Leftrightarrow d\left(a-b\right)\left(a^2+ab+b^2\right)=95\left(a^2+b^2\right)\)
Dễ thấy \(a^2+ab+b^2;a^2+b^2\)nguyên tố cùng nhau
\(\Rightarrow95⋮a^2+ab+b^2\)
Tới đây làm nốt
b/ \(\left(x-y\right)^3+\left(y-x\right)^3+3|2-x|=27\)
\(\Leftrightarrow|2-x|=9\)
\(H=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(H=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(\Leftrightarrow H=x^3-3x^2y+3xy^2-y^3+x^2-2xy+y^2-95\)
\(\Leftrightarrow\left(x-y\right)^3+\left(x-y\right)^2-95\)
\(\Leftrightarrow H=7^3+7^2-95=297\)
y×95-y×55+y×60=20900
(95-55+60)×y=20900
100×y=20900
y=20900÷100
y=209