phương trình \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\) có nghiệm là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
a) ta có \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=-4x^2-4x+6\)
\(\Leftrightarrow\sqrt{12\left(x+\dfrac{1}{2}\right)^2+16}+\sqrt{20\left(x+\dfrac{1}{2}\right)^2+9}=-\left(2x+1\right)^2+7\)ta có : \(VT\ge\sqrt{16}+\sqrt{9}=7\) và \(VT\le7\)
\(\Rightarrow VT=VP\) \(\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)
b) điều kiện \(x>0\)
ta có : \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\) \(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}-2=0\)
\(\Leftrightarrow\sqrt{x}+\dfrac{1}{\sqrt{x}}=2\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}}=2\Leftrightarrow x+\sqrt{x}=2\sqrt{x}\)
\(\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)
vậy \(x=1\)
b:
ĐKXĐ: x>0
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2-2-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}-2\right)^2=0\)
\(\Leftrightarrow x+1-2\sqrt{x}=0\)
=>x=1
Đặt \(T=\left|\sqrt{4x^2-12x+10}-\sqrt{4x^2+20x+74}\right|\)
\(T=\left|\sqrt{\left(2x-3\right)^2+1}-\sqrt{\left(2x+5\right)^2+7^2}\right|\)
Trong hệ tọa độ Oxy, xét \(M\left(2x;0\right);A\left(3;1\right);B\left(-5;7\right)\)
Ta có: \(\left\{{}\begin{matrix}AM=\sqrt{\left(2x-3\right)^2+1}\\BM=\sqrt{\left(2x+5\right)^2+7^2}\end{matrix}\right.\) ; \(AB=\sqrt{8^2+6^2}=10\)
\(\Rightarrow T=\left|AM-BM\right|\le AB=10\)
\(\Rightarrow0\le T\le10\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(0\le m\le10\)
Có 11 giá trị nguyên của m thỏa mãn
a: Ta có: \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3\le0\)
hay \(x\le3\)
b: Ta có: \(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|=5-2x\)
\(\Leftrightarrow2x-5\le0\)
hay \(x\le\dfrac{5}{2}\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+4}+\sqrt{3\left(2x-1\right)^2+16}=6\)
Do \(\left(2x-1\right)^2\ge0\Rightarrow VT\ge\sqrt{0+4}+\sqrt{3.0+16}=6\)
Dấu "=" xảy ra khi và chỉ khi \(\left(2x-1\right)^2=0\)
\(\Rightarrow x=\frac{1}{2}\)