Bài toán 1. So sánh: 200920 và 2009200910
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2009^{20}=\left(2009^2\right)^{10}=\left(2009\cdot2009\right)^{10}\)
\(20092009^{10}=\left(2009\cdot10001\right)^{10}\)
mà \(2009< 10001\)
nên \(2009^{20}< 20092009^{10}\)
ta có : \(2009^{20}=2009^{10}.2009^{10}\) ; \(20092009^{10}=2009^{10}.10001^{10}\)
Mà \(2009^{10}.2009^{10}\)<\(2009^{10}.10001^{10}\)
=> \(2009^{20}< 20092009^{10}\)
Ta có:2009200910 = (2009.10001)10 = 200910.1000110 > 200910.200910 = 200920
\(2009^{20}=\left[\left(2009\right)^2\right]^{10}=4036081^{10}\)
mà \(4036081< 20092009\)
nên \(2009^{20}< 20092009^{10}\)
2009²⁰ = (2009²)¹⁰ = 4036081¹⁰
Do 4036081 < 20092009
⇒ 4036081¹⁰ < 20092009¹⁰
Vậy 2009²⁰ < 20092009¹⁰
Bài 11:
Ta có: \(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)
\(\Leftrightarrow n^2\in\left\{0;4;64\right\}\)
hay \(n\in\left\{0;-2;2;8;-8\right\}\)
Ta có:2009200910 = (2009.10001)10 = 200910.1000110 > 200910.200910 = 200920
200920200920 và 2009200910.2009200910.
Ta có:
200920=(20092)10=(2009.2009)10.200920=(20092)10=(2009.2009)10.
2009200910=(2009.10001)10.2009200910=(2009.10001)10.
Vì 2009.2009<2009.100012009.2009<2009.10001
⇒(2009.2009)10<(2009.10001)10⇒(2009.2009)10<(2009.10001)10
⇒200920<2009200910.